
Lecture 06: SQL Joins
DATA 351: Data Management with SQL

Lucas P. Cordova, Ph.D.

2026-02-02

This lecture covers SQL joins using the Blockbuster Bend database. We explore
inner joins, outer joins, cross joins, and self joins with real examples from film rental
data.

Table of contents

1 Joining Tables 1

1 Joining Tables

Blockbuster Bend is the final video rental store. Today we connect data across the store’s
database.

1

1.1 Blockbuster Bend Database

1.1.1 Load the Database

Run these commands to load the data into PostgreSQL:

1.1.1.1 Commands

1 createdb blockbuster
2 psql -U postgres -d blockbuster -f blockbuster-schema.sql
3 psql -U postgres -d blockbuster -f blockbuster-data.sql

1.1.1.2 Expected Output

CREATE DATABASE
CREATE TABLE
...
INSERT 0 1
...

2

1.1.2 ERD Overview

The ERD shows how tables connect through primary and foreign keys.

3

1.1.3 Crows-Foot Notation

Figure 1: Crows-Foot Notation

1.1.4 Key Tables for Joins

The Blockbuster Bend database contains several interconnected table groups:

1.1.4.1 Film Data

• film - Movie titles and details
• language - Available languages
• category - Film genres (Action, Comedy, etc.)
• film_category - Links films to categories

1.1.4.2 People Data

• actor - Actor names
• film_actor - Links actors to films

4

• customer - Customer information
• staff - Employee records

1.1.4.3 Transaction Data

• inventory - Physical copies of films
• rental - Rental transactions
• payment - Payment records

1.1.4.4 Location Data

• store - Store locations
• address - Street addresses
• city - City names
• country - Country names

1.2 Why Joins Matter

1.2.1 Business Questions Require Multiple Tables

Most real questions span multiple tables:

• Which films were rented last month and by whom?
• Which customers have never rented a film?
• Which categories generate the most revenue at each store?
• Which actors appear in Action films?

Joins let us answer these questions by connecting tables.

1.2.2 The Problem with Separate Tables

Consider these two tables from our database:

1.2.2.1 film table (partial)

film_id title language_id

1 ACADEMY DINOSAUR 1
2 ACE GOLDFINGER 1
3 ADAPTATION HOLES 2

5

1.2.2.2 language table

language_id name

1 English
2 Italian
3 Japanese
4 Mandarin
5 French
6 German

How do we see film titles with their language names in a single result?

1.2.3 Keys Enable Joins

Primary Key: Uniquely identifies each row in a table (e.g., language_id in language)

Foreign Key: References a primary key in another table (e.g., language_id in film)

1.3 Inner Joins

1.3.1 Inner Join Concept

An inner join returns only rows where the join condition is satisfied in both tables.

film language Result

Only matching rows are returned

• Films with a valid language_id
• Languages that have films assigned
• Unmatched rows are excluded

6

1.3.2 Inner Join with Sample Data

Let’s trace through an inner join step by step:

1.3.2.1 Source Tables

film_id title language_id

1 ACADEMY DINOSAUR 1
2 ACE GOLDFINGER 1
3 ADAPTATION HOLES 2
4 AFFAIR PREJUDICE 6
5 AFRICAN EGG 4

language_id name

1 English
2 Italian
3 Japanese
4 Mandarin
5 French
6 German

1.3.2.2 Matching Process

The database compares each film’s language_id to the language table:

• ACADEMY DINOSAUR (language_id=1) matches English
• ACE GOLDFINGER (language_id=1) matches English
• ADAPTATION HOLES (language_id=2) matches Italian
• AFFAIR PREJUDICE (language_id=6) matches German
• AFRICAN EGG (language_id=4) matches Mandarin

1.3.2.3 Result

title name

ACADEMY DINOSAUR English
ACE GOLDFINGER English
ADAPTATION HOLES Italian
AFFAIR PREJUDICE German
AFRICAN EGG Mandarin

7

title name

Note: Japanese and French have no films, so they do not appear.

8

9

1.3.3 SQL Query Structure

Figure 2: SQL Query Structure

10

1.3.4 Basic Inner Join Syntax

1.3.4.1 Query

1 SELECT
2 f.title,
3 l.name AS language
4 FROM film AS f
5 JOIN language AS l
6 ON f.language_id = l.language_id
7 ORDER BY f.title
8 LIMIT 5;

1.3.4.2 Result

title | language
---------------------+----------
ACADEMY DINOSAUR | English
ACE GOLDFINGER | English
ADAPTATION HOLES | Italian
AFFAIR PREJUDICE | German
AFRICAN EGG | Mandarin

1.3.4.3 Explanation

• JOIN is shorthand for INNER JOIN
• AS f and AS l create table aliases
• ON specifies the join condition
• We can reference columns from both tables

1.3.5 Table Aliases Keep Joins Readable

Without aliases, queries become verbose and harder to read:

1.3.5.1 With Aliases (Preferred)

1 SELECT
2 f.title,
3 f.release_year,
4 l.name AS language
5 FROM film AS f

11

6 JOIN language AS l
7 ON f.language_id = l.language_id
8 WHERE f.rating = 'PG'
9 ORDER BY f.title

10 LIMIT 3;

1.3.5.2 Without Aliases (Verbose)

1 SELECT
2 film.title,
3 film.release_year,
4 language.name AS language
5 FROM film
6 JOIN language
7 ON film.language_id = language.language_id
8 WHERE film.rating = 'PG'
9 ORDER BY film.title

10 LIMIT 3;

1.3.5.3 Result

title | release_year | language
-------------------+--------------+----------
ACADEMY DINOSAUR | 2012 | English
AGENT TRUMAN | 2010 | English
ALASKA PHANTOM | 2016 | English

1.3.6 Multi-Table Joins: Film to Category

Films connect to categories through the film_category bridge table:

12

1.3.6.1 Query

1 SELECT
2 f.title,
3 c.name AS category
4 FROM film AS f
5 JOIN film_category AS fc
6 ON f.film_id = fc.film_id
7 JOIN category AS c
8 ON fc.category_id = c.category_id
9 WHERE c.name = 'Action'

10 ORDER BY f.title
11 LIMIT 5;

1.3.6.2 Result

title	category
ACE GOLDFINGER	Action
ADAPTATION HOLES	Action
AIRPLANE SIERRA	Action
ALASKA PHANTOM	Action
ANGELS LIFE	Action

1.3.6.3 Explanation

• First join connects film to film_category
• Second join connects film_category to category
• The bridge table handles the many-to-many relationship

1.3.7 Film to Actor Join

The film_actor bridge table connects films and actors:

1.3.7.1 Query

1 SELECT
2 f.title,
3 a.first_name,
4 a.last_name
5 FROM film AS f

13

6 JOIN film_actor AS fa
7 ON f.film_id = fa.film_id
8 JOIN actor AS a
9 ON fa.actor_id = a.actor_id

10 WHERE f.title = 'ACADEMY DINOSAUR'
11 ORDER BY a.last_name, a.first_name;

1.3.7.2 Result

title	first_name	last_name
ACADEMY DINOSAUR	JOHNNY	CAGE
ACADEMY DINOSAUR	ROCK	DUKAKIS
ACADEMY DINOSAUR	CHRISTIAN	GABLE
ACADEMY DINOSAUR	PENELOPE	GUINESS
ACADEMY DINOSAUR	MARY	KEITEL
ACADEMY DINOSAUR	OPRAH	KILMER
ACADEMY DINOSAUR	WARREN	NOLTE
ACADEMY DINOSAUR	SANDRA	PECK
ACADEMY DINOSAUR	MENA	TEMPLE
ACADEMY DINOSAUR	LUCILLE	TRACY

1.3.7.3 Data Flow

1.3.8 Practice: Customer Location Join

1.3.8.1 Challenge

Write a query that returns:

• customer_id
• first_name
• last_name
• city

Join customer to address to city. Order by last_name, then first_name. Limit to 5 rows.

14

1.3.8.2 Solution

1 SELECT
2 c.customer_id,
3 c.first_name,
4 c.last_name,
5 ci.city
6 FROM customer AS c
7 JOIN address AS a
8 ON c.address_id = a.address_id
9 JOIN city AS ci

10 ON a.city_id = ci.city_id
11 ORDER BY c.last_name, c.first_name
12 LIMIT 5;

1.3.8.3 Result

customer_id	first_name	last_name	city
505	RAFAEL	ABNEY	Talavera
504	NATHANIEL	ADAM	Joliet
36	KATHLEEN	ADAMS	Arak
96	DIANA	ALEXANDER	Augusta-Richmond County
470	GORDON	ALLARD	Hodeida

1.3.9 Filtering: ON vs WHERE

Use ON for join conditions and WHERE for row filters:

1.3.9.1 Correct Approach

1 SELECT
2 f.title,
3 f.rating,
4 c.name AS category
5 FROM film AS f
6 JOIN film_category AS fc
7 ON f.film_id = fc.film_id
8 JOIN category AS c
9 ON fc.category_id = c.category_id

10 WHERE f.rating = 'PG'

15

11 AND c.name = 'Comedy'
12 ORDER BY f.title
13 LIMIT 5;

1.3.9.2 Result

title	rating	category
ALI FOREVER	PG	Comedy
BLACKOUT PRIVATE	PG	Comedy
CAROL TEXAS	PG	Comedy
CHARADE DUFFEL	PG	Comedy
DISCIPLE MOTHER	PG	Comedy

1.3.9.3 Why This Matters

• ON defines how tables relate
• WHERE filters the joined result
• Putting filters in ON can produce unexpected results with outer joins

1.4 Outer Joins

1.4.1 When Inner Joins Are Not Enough

Inner joins exclude rows without matches. Sometimes we need to see unmatched rows:

• Which languages have no films?
• Which customers have never rented?
• Which inventory items have never been rented?

Outer joins preserve unmatched rows.

1.4.2 Left Join Concept

A left join keeps all rows from the left table, even without matches.

All A B LEFT JOIN

All left table rows returned

• Matching rows show data from both tables
• Non-matching rows show NULL for right table columns

16

1.4.3 Left Join with Film and Inventory Data

Let’s say that we wish to list all films that we do not have a copy of in our inventory. In other
words, we want to find all films that are not in the inventory table.

1.4.3.1 Source Tables

film (left table)

film_id title

1 ACADEMY DINOSAUR
2 ACE GOLDFINGER
3 ADAPTATION HOLES

… (1000 rows)

inventory (right table)

inventory_id film_id

1 1
2 2
3 3
4 4

… (4581 rows)

1.4.3.2 Query

1 SELECT
2 f.film_id,
3 f.title,
4 i.inventory_id
5 FROM film f
6 LEFT JOIN inventory i
7 ON i.film_id = f.film_id
8 WHERE i.inventory_id IS NULL
9 ORDER BY f.title;

17

1.4.3.3 Left Join Result

film_id title inventory_id

14 ALICE FANTASIA NULL
33 APOLLO TEEN NULL
36 ARGONAUTS TOWN NULL
38 ARK RIDGEMONT NULL

… (42 rows)

1.4.3.4 Explanation

• LEFT JOIN keeps all films
• Films without a matching inventory get NULL values
• WHERE i.inventory_id IS NULL filters to only unmatched rows

1.4.4 Right Join Concept

A right join keeps all rows from the right table, even without matches.

A All B RIGHT JOIN

All right table rows returned

• Equivalent to a left join with tables swapped
• Less common in practice

1.4.5 Full Outer Join Concept

A full outer join keeps all rows from both tables.

All A All B FULL OUTER JOIN

All rows from both tables

• Unmatched left rows show NULL for right columns
• Unmatched right rows show NULL for left columns
• Useful for finding all mismatches

18

1.4.6 What Would Left Join and Right Join Look Like for these Tables?

Table A

id value_a

1 Apple
2 Banana
3 Cherry

Table B

id value_b

2 Two
3 Three
4 Four

1.4.7 Full Outer Join Example

1.4.7.1 Sample Data

Table A

id value_a

1 Apple
2 Banana
3 Cherry

Table B

id value_b

2 Two
3 Three
4 Four

1.4.7.2 Full Outer Join Result

19

a.id value_a b.id value_b

1 Apple NULL NULL
2 Banana 2 Two
3 Cherry 3 Three
NULL NULL 4 Four

1.4.7.3 Identifying Unmatched Rows

1 -- Rows only in A
2 WHERE b.id IS NULL
3

4 -- Rows only in B
5 WHERE a.id IS NULL
6

7 -- Rows only in one table (not both)
8 WHERE a.id IS NULL OR b.id IS NULL

1.4.8 Outer Join Comparison Summary

Join Type Left Table Right Table Use Case

INNER JOIN Only matched Only matched Standard queries
LEFT JOIN All rows Only matched Find unmatched in right
RIGHT JOIN Only matched All rows Find unmatched in left
FULL OUTER JOIN All rows All rows Find all unmatched

1.4.9 Practice: Unrented Inventory

1.4.9.1 Challenge

Find inventory items that have never been rented.

Return:

• inventory_id
• film_id
• title
• store_id

Order by store_id, then inventory_id. Limit to 5 rows.

20

1.4.9.2 Solution

1 SELECT
2 i.inventory_id,
3 i.film_id,
4 f.title,
5 i.store_id
6 FROM inventory AS i
7 LEFT JOIN rental AS r
8 ON i.inventory_id = r.inventory_id
9 JOIN film AS f

10 ON i.film_id = f.film_id
11 WHERE r.rental_id IS NULL
12 ORDER BY i.store_id, i.inventory_id
13 LIMIT 5;

1.4.9.3 Result

inventory_id | film_id | title | store_id
-------------+---------+-------------------+----------
1 | 1 | ACADEMY DINOSAUR | 1
2 | 1 | ACADEMY DINOSAUR | 1
...

1.5 Cross Joins

1.5.1 Cross Join Concept

A cross join (Cartesian product) returns every combination of rows from both tables.

3 rows 4 rows Result: 3 x 4 = 12 rows

No join condition

• Every row in A pairs with every row in B
• Result size = rows(A) x rows(B)
• Can produce very large results

21

1.5.2 Cross Join with Sample Data

1.5.2.1 Source Tables

store

store_id

1
2

category (partial)

category_id name

1 Action
5 Comedy
7 Drama

1.5.2.2 Cross Join Result

store_id name

1 Action
1 Comedy
1 Drama
2 Action
2 Comedy
2 Drama

Every store paired with every category (2 x 3 = 6 rows).

1.5.3 Cross Join Use Case: Store-Category Grid

Generate a planning grid for all store-category combinations:

22

1.5.3.1 Query

1 SELECT
2 s.store_id,
3 c.name AS category,
4 0 AS planned_inventory
5 FROM store AS s
6 CROSS JOIN category AS c
7 WHERE s.store_id IN (1, 2)
8 ORDER BY s.store_id, c.name
9 LIMIT 10;

1.5.3.2 Result

store_id | category | planned_inventory
---------+------------+------------------
1 | Action | 0
1 | Animation | 0
1 | Children | 0
1 | Classics | 0
1 | Comedy | 0
1 | Documentary| 0
1 | Drama | 0
1 | Family | 0
1 | Foreign | 0
1 | Games | 0

1.5.3.3 Use Cases

• Inventory planning templates
• Report scaffolding
• Generating test data
• Date/category combinations for analysis

1.5.4 Cross Join Caution

Cross joins can create enormous result sets:

Table A Rows Table B Rows Result Rows

100 100 10,000

23

Table A Rows Table B Rows Result Rows

1,000 1,000 1,000,000
10,000 10,000 100,000,000

Always use WHERE or LIMIT when exploring cross joins.

1.6 Self Joins

1.6.1 Self Join Concept

A self join joins a table to itself. This is useful when:

• Comparing rows within the same table
• Finding hierarchical relationships
• Detecting duplicates or related records

1.6.2 Finding Customers with Same Last Name

1.6.2.1 Query

24

1 SELECT
2 c1.customer_id AS customer_1,
3 c1.first_name AS first_1,
4 c1.last_name,
5 c2.customer_id AS customer_2,
6 c2.first_name AS first_2
7 FROM customer AS c1
8 JOIN customer AS c2
9 ON c1.last_name = c2.last_name

10 AND c1.customer_id < c2.customer_id
11 ORDER BY c1.last_name, c1.customer_id
12 LIMIT 5;

1.6.2.2 Result

customer_1 | first_1 | last_name | customer_2 | first_2
-----------+-----------+-----------+------------+---------
318 | BRIAN | WYMAN | 412 | JOHN
...

1.6.2.3 Explanation

• Table aliased as both c1 and c2
• c1.customer_id < c2.customer_id prevents duplicate pairs
• Without this condition, we would get (A,B) and (B,A)

1.6.3 Self Join for Hierarchical Data

Self joins work well for parent-child relationships:

1.6.3.1 Concept

25

1.6.3.2 Query Pattern

1 -- If staff had a reports_to column:
2 SELECT
3 e.first_name AS employee,
4 m.first_name AS manager
5 FROM staff AS e
6 JOIN staff AS m
7 ON e.reports_to = m.staff_id;

1.6.3.3 Applications

• Organization charts
• Category hierarchies
• Reply threads in forums

1.7 Multi-Table Join Patterns

1.7.1 The Rental Transaction Chain

Tracking a rental requires joining multiple tables:

26

1.7.2 Complete Rental Query

1.7.2.1 Query

1 SELECT
2 c.first_name || ' ' || c.last_name AS customer,
3 f.title,
4 r.rental_date::date AS rented,
5 r.return_date::date AS returned,
6 p.amount
7 FROM customer AS c
8 JOIN rental AS r
9 ON c.customer_id = r.customer_id

10 JOIN inventory AS i
11 ON r.inventory_id = i.inventory_id
12 JOIN film AS f
13 ON i.film_id = f.film_id
14 JOIN payment AS p
15 ON r.rental_id = p.rental_id
16 ORDER BY r.rental_date DESC
17 LIMIT 5;

1.7.2.2 Result

customer | title | rented | returned | amount
------------------+--------------------+------------+------------+-------
AUSTIN CINTRON | SOMETHING DUCK | 2022-07-27 | 2022-08-02 | 4.99
AUSTIN CINTRON | TITANS JERK | 2022-07-27 | 2022-08-01 | 4.99
AUSTIN CINTRON | SUNRISE LEAGUE | 2022-07-27 | 2022-07-28 | 2.99
...

27

1.7.2.3 Join Path

1. customer to rental via customer_id
2. rental to inventory via inventory_id
3. inventory to film via film_id
4. rental to payment via rental_id

1.7.3 Actor Filmography Query

1.7.3.1 Query

1 SELECT
2 a.first_name,
3 a.last_name,
4 f.title,
5 f.release_year,
6 c.name AS category
7 FROM actor AS a
8 JOIN film_actor AS fa
9 ON a.actor_id = fa.actor_id

10 JOIN film AS f
11 ON fa.film_id = f.film_id
12 JOIN film_category AS fc
13 ON f.film_id = fc.film_id
14 JOIN category AS c
15 ON fc.category_id = c.category_id
16 WHERE a.last_name = 'GUINESS'
17 ORDER BY f.release_year, f.title;

1.7.3.2 Result

first_name | last_name | title | release_year | category
-----------+-----------+--------------------+--------------+----------
PENELOPE | GUINESS | ACADEMY DINOSAUR | 2012 | Documentary
PENELOPE | GUINESS | ANACONDA CONFESSIONS| 2020 | Animation
...

1.7.3.3 Query Structure

Five tables joined through their foreign key relationships.

28

1.7.4 Join on Multiple Columns

Sometimes joins need multiple columns to match correctly:

1.7.4.1 Query

1 SELECT
2 p.payment_id,
3 p.customer_id,
4 p.rental_id,
5 p.amount,
6 r.rental_date::date
7 FROM payment AS p
8 JOIN rental AS r
9 ON p.rental_id = r.rental_id

10 AND p.customer_id = r.customer_id
11 WHERE p.customer_id = 1
12 ORDER BY r.rental_date
13 LIMIT 5;

1.7.4.2 Result

payment_id | customer_id | rental_id | amount | rental_date
-----------+-------------+-----------+--------+------------
17503 | 1 | 76 | 2.99 | 2022-05-25
17504 | 1 | 573 | 0.99 | 2022-05-28
17505 | 1 | 1185 | 5.99 | 2022-06-15
...

1.7.4.3 When to Use Multiple Columns

• Composite keys
• Data validation
• Ensuring correct matches in denormalized data

1.8 Common Pitfalls

1.8.1 Ambiguous Column Names

When two tables have the same column name:

29

1.8.1.1 Error

1 SELECT
2 customer_id, -- Ambiguous!
3 first_name,
4 last_name
5 FROM customer
6 JOIN rental
7 ON customer.customer_id = rental.customer_id;

ERROR: column reference "customer_id" is ambiguous

1.8.1.2 Fixed

1 SELECT
2 c.customer_id, -- Qualified with alias
3 c.first_name,
4 c.last_name
5 FROM customer AS c
6 JOIN rental AS r
7 ON c.customer_id = r.customer_id;

1.8.2 Missing Join Conditions

Forgetting the ON clause creates a cross join:

1.8.2.1 Problem

1 -- This creates a cross join!
2 SELECT f.title, c.name
3 FROM film AS f, category AS c
4 LIMIT 5;

Every film paired with every category (1000 x 16 = 16,000 rows).

30

1.8.2.2 Solution

Always use explicit JOIN ... ON syntax:

1 SELECT f.title, c.name
2 FROM film AS f
3 JOIN film_category AS fc ON f.film_id = fc.film_id
4 JOIN category AS c ON fc.category_id = c.category_id
5 LIMIT 5;

1.8.3 Cartesian Explosion

Adding more tables can multiply result sizes:

Prevention:

• Check join conditions carefully
• Use COUNT(*) before SELECT *
• Add LIMIT during development

1.8.4 Join Verification Checklist

Before running a complex join:

1. Are all join conditions specified?
2. Are column references qualified with aliases?
3. Is this an inner or outer join?

31

4. Could any join create a Cartesian product?
5. Have I tested with LIMIT first?

1.9 Practice Problems

1.9.1 Practice 1: Store Revenue by Category

1.9.1.1 Challenge

For each store, find total revenue by film category.

Return:

• store_id
• category
• total_revenue

Order by store_id, then total_revenue descending.

1.9.1.2 Solution

1 SELECT
2 i.store_id,
3 c.name AS category,
4 SUM(p.amount) AS total_revenue
5 FROM payment AS p
6 JOIN rental AS r ON p.rental_id = r.rental_id
7 JOIN inventory AS i ON r.inventory_id = i.inventory_id
8 JOIN film AS f ON i.film_id = f.film_id
9 JOIN film_category AS fc ON f.film_id = fc.film_id

10 JOIN category AS c ON fc.category_id = c.category_id
11 GROUP BY i.store_id, c.name
12 ORDER BY i.store_id, total_revenue DESC;

1.9.1.3 Result

store_id | category | total_revenue
---------+-------------+--------------
1 | Sports | 4892.19
1 | Sci-Fi | 4756.98
1 | Animation | 4656.30
...

32

1.9.2 Practice 2: Actors Without Films

1.9.2.1 Challenge

Find any actors who have no films in the database.

Return:

• actor_id
• first_name
• last_name

Order by last_name, first_name.

1.9.2.2 Solution

1 SELECT
2 a.actor_id,
3 a.first_name,
4 a.last_name
5 FROM actor AS a
6 LEFT JOIN film_actor AS fa
7 ON a.actor_id = fa.actor_id
8 WHERE fa.film_id IS NULL
9 ORDER BY a.last_name, a.first_name;

1.9.2.3 Result

actor_id | first_name | last_name
---------+------------+----------
(0 rows - all actors have films in this database)

1.9.3 Practice 3: Customer Rental History

1.9.3.1 Challenge

Create a rental history for customer MARY SMITH (customer_id = 1).

Return:

• rental_date
• title
• category

33

• amount

Order by rental_date descending. Limit to 10 rows.

1.9.3.2 Solution

1 SELECT
2 r.rental_date::date,
3 f.title,
4 c.name AS category,
5 p.amount
6 FROM customer AS cu
7 JOIN rental AS r ON cu.customer_id = r.customer_id
8 JOIN payment AS p ON r.rental_id = p.rental_id
9 JOIN inventory AS i ON r.inventory_id = i.inventory_id

10 JOIN film AS f ON i.film_id = f.film_id
11 JOIN film_category AS fc ON f.film_id = fc.film_id
12 JOIN category AS c ON fc.category_id = c.category_id
13 WHERE cu.customer_id = 1
14 ORDER BY r.rental_date DESC
15 LIMIT 10;

1.10 Key Takeaways

1.10.1 Join Type Summary

Join Type Returns NULL Handling

INNER JOIN Only matching rows No NULLs from join
LEFT JOIN All left + matched

right
NULLs for unmatched right

RIGHT JOIN All right + matched
left

NULLs for unmatched left

FULL OUTER JOIN All rows from both NULLs for unmatched on both sides
CROSS JOIN All combinations No join condition
SELF JOIN Table joined to itself Depends on join type used

1.10.2 Best Practices

1. Always use table aliases for readability
2. Qualify all column references to avoid ambiguity

34

3. Use explicit JOIN syntax instead of comma-separated tables
4. Put join conditions in ON, filters in WHERE
5. Test with LIMIT before running full queries
6. Verify row counts to catch Cartesian products

1.10.3 Exit Ticket

Write a query that answers:

Which films were rented in 2022 by customers from store 1?

Return the customer name, film title, and rental date.

Be ready to share your join path and key columns.

1.11 References

1.11.1 References

1. Forta, B. (2024). SQL in 10 Minutes a Day (6th ed.). Addison-Wesley.
2. PostgreSQL Documentation. SELECT - Joins. https://www.postgresql.org/docs/cur-

rent/queries-table-expressions.html
3. Silberschatz, A., Korth, H., & Sudarshan, S. (2019). Database System Concepts (7th ed.).

McGraw-Hill.

35

	Joining Tables

