Lecture 06: SQL Joins

DATA 351: Data Management with SQL
Lucas P. Cordova, Ph.D.
2026-02-02

This lecture covers SQL joins using the Blockbuster Bend database. We explore
inner joins, outer joins, cross joins, and self joins with real examples from film rental
data.

Table of contents

1 Joining Tables 1

1 Joining Tables

In the age of Netflix and other digital
streaming platforms, Harding credits

her store’s success to both local
support and Bend’s budding tourism
industry.

Blockbuster Bend is the final video rental store. Today we connect data across the store’s
database.

1.1 Blockbuster Bend Database
1.1.1 Load the Database

Run these commands to load the data into PostgreSQL:

1.1.1.1 Commands

createdb blockbuster
psql -U postgres -d blockbuster -f blockbuster-schema.sql
psql -U postgres -d blockbuster -f blockbuster-data.sql

1.1.1.2 Expected Output

CREATE DATABASE
CREATE TABLE

INSERT O 1

1.1.2 ERD Overview

T customer ENTITY-RELATIONSHIP DIAGRAM
155 eumtomar_jd Sariaid NOT MULL
il NET NULL T emuntry
bt NOT NULL
T HULL 12 pountry_id sariald MOT MULL
7 country 1t NOT NULL
- (Dt smime st 0T L
BLOCKBUSTER VIDED] sctivabool bool NOT NULL [b
create_date date NOT NULL |1, ®
BEND, OREGON et oets i . Lol
p i = aity
p 1 gity_id werisld NOT NULL
P i . a2 ety et HOT NULL
p = s S 23 country_id iend HOT NULL
= vl 127 wiorn_id seriald NOT NULL ., O lmst_update _timestamptz HOT NULL
. 120 statl_id wariald MOT HULL 21 manages_stat_id intd NOT HULL . "
T et —TT |12 sdekens_id et NOT HULL :
12 rental_bd weriald NOT NULL 1t MOTHALL [Ln | D) st updste timestamptz NOT HULL
) reenal_datn timestamptz NOT NULL. ntaNOTHULL| ™ = Lok i Lk
12 iirilery_sd iwna NOT NuLL |17 | J . T sddross
155 customer_id B NOT WULL ikl HOT WULL = y g 100 addrana_id sariald BOT MULL
) retum_dats Hmestampds ol MOT NLLL - wemt NOT MULL
L e id irrd HOT WULL ot WOT WL # 2 -
T lust_updabe Hmestampts NOT MULL taxt - it NET NULL
TnF) last_update timestamptz HOT NULL p vl MO WL
l i} pieture tyten| = film -
i LT et NOT MULL
et NOT HULL T lmst_update fimestamptz HOT MULL
W Lok m'yl:‘!
T payment !
[Ey— eriald NOT MULL = e intd NOT MULL E languagn
) maymamt sain timestamptz NOT NULL 1+ inwentary_ikd seriald NOT UL, et 4 | Erye— eemiald, NOT MULL
T IL fim_i ink& HOT NULL | 4 ink2 NOT NULL [0"‘ — r———r—erry
ot NOT HULL 125 mor_id ik HOT UL rumesic(, 2) W L ST TE L imestampts NOT HULL
int4 NOT MULL last_updats timestamptz NOT NULL ez
L e numaric|5, 2] NOT NLLL 3 mamaic|E, !}WI’H-!LL
-- nblic mesa_rling
timestamptz NOT NULL
1o} _tas
& categary e tvecior NOT MULL
SEp——— saeiald NOT HULL 1 film_id iegd HOT NULL L
57 rame bt WOT HLLL 15 catngory_id e HOT HULL ”' T actor
7 last_update imestamptz NOT NULL 7 last_update timestamptz NOT NULL A f seriala NOT NULL
Bl . g —TTT
intd HOT WULL [*2 Iat_nama DT ML
A ROT AL lusi_update liMEStamplz NOT HULL
timawlampty ROT ML

The ERD shows how tables connect through primary and foreign keys.

1.1.3 Crows-Foot Notation

A Pl
- AN

Zero or one Many
| | |
| ||
One One (and only one)
Zero or many One or many

Figure 1: Crows-Foot Notation

1.1.4 Key Tables for Joins

The Blockbuster Bend database contains several interconnected table groups:

1.1.4.1 Film Data

o film - Movie titles and details

e language - Available languages

o category - Film genres (Action, Comedy, etc.)
e film_category - Links films to categories

1.1.4.2 People Data

e actor - Actor names
e film actor - Links actors to films

e customer - Customer information
o staff - Employee records

1.1.4.3 Transaction Data

e inventory - Physical copies of films
o rental - Rental transactions
e payment - Payment records

1.1.4.4 Location Data

e store - Store locations

e address - Street addresses
e city - City names

e country - Country names

1.2 Why Joins Matter
1.2.1 Business Questions Require Multiple Tables

Most real questions span multiple tables:

e Which films were rented last month and by whom?

e Which customers have never rented a film?

e Which categories generate the most revenue at each store?
o Which actors appear in Action films?

Joins let us answer these questions by connecting tables.

1.2.2 The Problem with Separate Tables

Consider these two tables from our database:

1.2.2.1 film table (partial)

film_id title language_ id
1 ACADEMY DINOSAUR 1
2 ACE GOLDFINGER 1
3 ADAPTATION HOLES 2

1.2.2.2 language table

language id name

English
Italian
Japanese
Mandarin
French
German

S T W N =

How do we see film titles with their language names in a single result?

1.2.3 Keys Enable Joins

Foreign Key Primary Key
fi
ilm . s language
language_id = 1 language_id = 1

Primary Key: Uniquely identifies each row in a table (e.g., language_id in language)

Foreign Key: References a primary key in another table (e.g., language_id in film)

1.3 Inner Joins
1.3.1 Inner Join Concept

An inner join returns only rows where the join condition is satisfied in both tables.
film language Result

Only matching rows are returned

e Films with a valid language_id
o Languages that have films assigned
o Unmatched rows are excluded

1.3.2 Inner Join with Sample Data

Let’s trace through an inner join step by step:

1.3.2.1 Source Tables

film_id title language_ id

ACADEMY DINOSAUR
ACE GOLDFINGER
ADAPTATION HOLES
AFFAIR PREJUDICE
AFRICAN EGG

U W N =
O N =

language id name

English
Italian
Japanese
Mandarin
French
German

S U W N =

1.3.2.2 Matching Process

The database compares each film’s language_id to the language table:

« ACADEMY DINOSAUR (language_id=1) matches English
o ACE GOLDFINGER (language_ id=1) matches English

o ADAPTATION HOLES (language id=2) matches Italian

o AFFAIR PREJUDICE (language id=6) matches German
o AFRICAN EGG (language id=4) matches Mandarin

1.3.2.3 Result

title name

ACADEMY DINOSAUR English
ACE GOLDFINGER English
ADAPTATION HOLES Italian
AFFAIR PREJUDICE German
AFRICAN EGG Mandarin

title name

Note: Japanese and French have no films, so they do not appear.

1.3.3 SQL Query Structure

\\\ \\\
(N \
N N
N \
N\ N\
S v .- SELECT
\\ ,/\
\/\/ \\
/, hN \FROM t1
/ N
¢‘\‘~~\ II \\
Tl ~JOIN t2
'\‘\\.
L “"\
| -
“~ON
¢Y~-.___ ‘\
__~%~ L
" ~~--WHERE
\
\
€C - ____ \
v 7~ GROUP BY column
\
1
1
______ +----HAVING
#(————— /
/
i __--" .- ORDER BY
L« T
1 e
v _--~LIMIT - count
A -
R -
i 0
veT

Figure 2: SQL Query Structure

10

column_a, column_b

t1.column_a = t2.column_a

constraint_expression

constraint_expression

column ASC/DESC

1.3.4 Basic Inner Join Syntax

1.3.4.1 Query

SELECT
f.title,
l.name AS language
FROM film AS £
JOIN language AS 1
ON f.language_id = 1.language_id
ORDER BY f.title

LIMIT 5;

1.3.4.2 Result

title | language
_____________________ +__________
ACADEMY DINOSAUR | English
ACE GOLDFINGER | English
ADAPTATION HOLES | Italian
AFFATIR PREJUDICE | German
AFRICAN EGG | Mandarin

1.3.4.3 Explanation

e JOIN is shorthand for INNER JOIN

e AS f and AS 1 create table aliases

e 0N specifies the join condition

e We can reference columns from both tables

1.3.5 Table Aliases Keep Joins Readable

Without aliases, queries become verbose and harder to read:

1.3.5.1 With Aliases (Preferred)

SELECT
f.title,
f.release_year,
l.name AS language
FROM film AS £

11

JOIN language AS 1
ON f.language_id = 1l.language_id
WHERE f.rating = 'PG'
ORDER BY f.title
LIMIT 3;

1.3.5.2 Without Aliases (Verbose)

SELECT
film.title,
film.release_year,
language.name AS language
FROM £film
JOIN language
ON film.language_id = language.language_id
WHERE film.rating = 'PG'
ORDER BY film.title

LIMIT 3;

1.3.5.3 Result

title | release_year | language
___________________ +______________+__________
ACADEMY DINOSAUR | 2012 | English
AGENT TRUMAN | 2010 | English
ALASKA PHANTOM | 2016 | English

1.3.6 Multi-Table Joins: Film to Category

Films connect to categories through the film_category bridge table:

film film_category

(film_id) | (film_id, category_id)

12

category
(category_id)

10

11

1.3.6.1 Query

SELECT

f.title,

c.name AS category
FROM film AS £
JOIN film_category AS fc

ON f.film_id = fc.film_id
JOIN category AS c

ON fc.category_id
WHERE c.name = 'Action'
ORDER BY f.title

c.category_id

LIMIT 5;

1.3.6.2 Result

| title | category |

| = | == |
ACE GOLDFINGER | Action

I I
| ADAPTATION HOLES | Action I
| AIRPLANE SIERRA | Action I
| ALASKA PHANTOM | Action I
I | I

ANGELS LIFE Action

1.3.6.3 Explanation

o First join connects £ilm to film_category
o Second join connects film_category to category
e The bridge table handles the many-to-many relationship

1.3.7 Film to Actor Join

The £film_actor bridge table connects films and actors:

1.3.7.1 Query

SELECT
f.title,
a.first_name,
a.last_name
FROM film AS £

13

JOIN film_actor AS fa
ON f.film id = fa.film_id
JOIN actor AS a
ON fa.actor_id = a.actor_id
WHERE f.title = 'ACADEMY DINOSAUR'
ORDER BY a.last_name, a.first_name;

1.3.7.2 Result

| ACADEMY
| ACADEMY
| ACADEMY
| ACADEMY
| ACADEMY
| ACADEMY
| ACADEMY
| ACADEMY
| ACADEMY
| ACADEMY

DINOSAUR
DINOSAUR
DINOSAUR
DINOSAUR
DINOSAUR
DINOSAUR
DINOSAUR
DINOSAUR
DINOSAUR
DINOSAUR

1.3.7.3 Data Flow

film
film_id = 1

first name | last_name

| JOHNNY | CAGE

| ROCK | DUKAKIS

| CHRISTIAN | GABLE

| PENELOPE | GUINESS

| MARY | KEITEL

| OPRAH | KILMER

| WARREN | NOLTE

| SANDRA | PECK

| MENA | TEMPLE

| LUCILLE | TRACY
film_actor
film_id = 1

1.3.8 Practice: Customer Location Join

1.3.8.1 Challenge

Write a query that returns:

e customer_id

e first_name
e last_name

e city

Join customer to address to city. Order by last_name, then first_name. Limit to 5 rows.

14

actor
actor_id

10

11

12

1.3.8.2 Solution

SELECT

c.customer_id,

c.first_name,

c.last_name,

ci.city
FROM customer AS c
JOIN address AS a

ON c.address_id = a.address_id
JOIN city AS ci

ON a.city_id = ci.city_id
ORDER BY c.last_name, c.first_name
LIMIT 5;

1.3.8.3 Result

| customer_id | first_name | last_name | city

| 505 | RAFAEL | ABNEY | Talavera

| 504 | NATHANIEL | ADAM | Joliet

| 36 | KATHLEEN | ADAMS | Arak

| 96 | DIANA | ALEXANDER | Augusta-Richmond County
| 470 | GORDON | ALLARD | Hodeida

1.3.9 Filtering: ON vs WHERE

Use 0N for join conditions and WHERE for row filters:

1.3.9.1 Correct Approach

SELECT
f.title,
f.rating,
c.name AS category
FROM film AS £
JOIN film_category AS fc
ON f.film_id = fc.film_id
JOIN category AS c
ON fc.category_id = c.category_id
WHERE f.rating = 'PG'

15

11 AND c.name = 'Comedy'
12 ORDER BY f.title

13 LIMIT 5;

1.3.9.2 Result

| title | rating | category |
| - | - | —==—- I
ALI FOREVER	PG	Comedy
BLACKOUT PRIVATE	PG	Comedy
CAROL TEXAS	PG	Comedy
CHARADE DUFFEL	PG	Comedy
DISCIPLE MOTHER	PG	Comedy

1.3.9.3 Why This Matters

e 0N defines how tables relate
e WHERE filters the joined result
e Putting filters in ON can produce unexpected results with outer joins

1.4 Outer Joins
1.4.1 When Inner Joins Are Not Enough

Inner joins exclude rows without matches. Sometimes we need to see unmatched rows:

e Which languages have no films?
e Which customers have never rented?
e Which inventory items have never been rented?

Outer joins preserve unmatched rows.

1.4.2 Left Join Concept

A left join keeps all rows from the left table, even without matches.
All A B LEFT JOIN

All left table rows returned

e Matching rows show data from both tables
¢ Non-matching rows show NULL for right table columns

16

1.4.3 Left Join with Film and Inventory Data

Let’s say that we wish to list all films that we do not have a copy of in our inventory. In other
words, we want to find all films that are not in the inventory table.

1.4.3.1 Source Tables
film (left table)

film_id title

1 ACADEMY DINOSAUR
2 ACE GOLDFINGER
3 ADAPTATION HOLES

. (1000 rows)

inventory (right table)

inventory_id film_ id

=W N
=W N

. (4581 rows)

1.4.3.2 Query

SELECT

f.film_id,

f.title,

i.inventory_id
FROM film £
LEFT JOIN inventory i

ON i.film_id = f.film_id
WHERE i.inventory_id IS NULL
ORDER BY f.title;

17

1.4.3.3 Left Join Result

film_id title inventory_ id
14 ALICE FANTASIA NULL
33 APOLLO TEEN NULL
36 ARGONAUTS TOWN NULL
38 ARK RIDGEMONT NULL

. (42 rows)

1.4.3.4 Explanation

e LEFT JOIN keeps all films
¢ Films without a matching inventory get NULL values
o WHERE i.inventory_id IS NULL filters to only unmatched rows

1.4.4 Right Join Concept

A right join keeps all rows from the right table, even without matches.
A All B RIGHT JOIN
All right table rows returned

e Equivalent to a left join with tables swapped
e Less common in practice

1.4.5 Full Outer Join Concept

A full outer join keeps all rows from both tables.
All A All B FULL OUTER JOIN
All rows from both tables

e Unmatched left rows show NULL for right columns
e Unmatched right rows show NULL for left columns
e Useful for finding all mismatches

18

1.4.6 What Would Left Join and Right Join Look Like for these Tables?

Table A

Table B

1.4.7 Full Outer Join Example

1.4.7.1 Sample Data
Table A

Table B

1.4.7.2 Full Outer Join Result

=W N

=W N

value a

Apple
Banana

Cherry

value b

Two
Three
Four

value a

Apple
Banana

Cherry

value b

Two
Three
Four

19

oo ~ =] (o))

a.id value _a b.id value b

1 Apple NULL NULL
2 Banana 2 Two
3 Cherry 3 Three
NULL NULL 4 Four

1.4.7.3 Identifying Unmatched Rows

-- Rows only in A
WHERE b.id IS NULL

-- Rows only in B
WHERE a.id IS NULL

-- Rows only in one table (not both)
WHERE a.id IS NULL OR b.id IS NULL

1.4.8 Outer Join Comparison Summary

Join Type Left Table Right Table Use Case

INNER JOIN Only matched Only matched Standard queries

LEFT JOIN All rows Only matched Find unmatched in right
RIGHT JOIN Only matched All rows Find unmatched in left
FULL OUTER JOIN All rows All rows Find all unmatched

1.4.9 Practice: Unrented Inventory

1.4.9.1 Challenge
Find inventory items that have never been rented.

Return:

e inventory_id
o film_id

e title

e store_id

Order by store_id, then inventory_id. Limit to 5 rows.

20

10

11

12

13

1.4.9.2 Solution

SELECT
i.inventory_id,
i.film_id,
f.title,
i.store_id
FROM inventory AS i
LEFT JOIN rental AS r
ON i.inventory_id = r.inventory_id
JOIN film AS f£
ON i.film_id = f.film_id
WHERE r.rental_id IS NULL
ORDER BY i.store_id, i.inventory_id
LIMIT 5;

1.4.9.3 Result

inventory_id | film_id | title

_____________ +_________+__________________

1 | ACADEMY DINOSAUR
2 | 1 | ACADEMY DINOSAUR

1.5 Cross Joins

1.5.1 Cross Join Concept

A cross join (Cartesian product) returns every combination of rows from both tables.

3 rows 4 rows Result: 3 x 4 = 12 rows

No join condition

e Every row in A pairs with every row in B
o Result size = rows(A) x rows(B)
e Can produce very large results

21

1.5.2 Cross Join with Sample Data

1.5.2.1 Source Tables

store

store_id

category (partial)

category_id mname

1 Action
) Comedy
7 Drama

1.5.2.2 Cross Join Result

store_id name

Action
Comedy
Drama
Action
Comedy
Drama

NN = = =

Every store paired with every category (2 x 3 = 6 rows).

1.5.3 Cross Join Use Case: Store-Category Grid

Generate a planning grid for all store-category combinations:

22

1.5.3.1 Query

SELECT

s.store_id,

c.name AS category,

0 AS planned_inventory
FROM store AS s
CROSS JOIN category AS c
WHERE s.store_id IN (1, 2)
ORDER BY s.store_id, c.name
LIMIT 10;

1.5.3.2 Result

store_id | category planned_inventory

|

+

| Action
| Animation
| Children
| Classics
| Comedy

| Documentary
| Drama

| Family

| Foreign

| Games

__________+_

N e e = T e T T = T =S S
O O O O O O O O O O

1.5.3.3 Use Cases

¢ Inventory planning templates

e Report scaffolding

e Generating test data

o Date/category combinations for analysis

1.5.4 Cross Join Caution

Cross joins can create enormous result sets:

Table A Rows Table B Rows

Result Rows

100 100

23

10,000

Table A Rows Table B Rows Result Rows

1,000 1,000 1,000,000
10,000 10,000 100,000,000

Always use WHERE or LIMIT when exploring cross joins.

1.6 Self Joins
1.6.1 Self Join Concept

A self join joins a table to itself. This is useful when:

e Comparing rows within the same table
o Finding hierarchical relationships
¢ Detecting duplicates or related records

Same Table

customer AS c1

c1.last_name =
c2.last_name

l

customer AS c2

1.6.2 Finding Customers with Same Last Name

1.6.2.1 Query

24

10

11

12

SELECT
cl.customer_id AS customer_1,
cl.first_name AS first_1,
cl.last_name,
c2.customer_id AS customer_2,
c2.first_name AS first_2

FROM customer AS cl

JOIN customer AS c2
ON cl.last_name = c2.last_name
AND cl.customer_id < c2.customer_id

ORDER BY cl.last_name, cl.customer_id

LIMIT 5;

1.6.2.2 Result

customer_1 | first_1 | last_name | customer_2 | first_2
——————————— I
318 | BRIAN | WYMAN | 412 | JOHN

1.6.2.3 Explanation

o Table aliased as both c1 and c2
e cl.customer_id < c2.customer_id prevents duplicate pairs
o Without this condition, we would get (A,B) and (B,A)

1.6.3 Self Join for Hierarchical Data

Self joins work well for parent-child relationships:

1.6.3.1 Concept

25

Manager
staff_id = 1

Employee Employee
reports_to = 1 reports_to = 1

1.6.3.2 Query Pattern

-- If staff had a reports_to column:
SELECT
e.first_name AS employee,
m.first_name AS manager
FROM staff AS e
JOIN staff AS m
ON e.reports_to = m.staff_id;

1.6.3.3 Applications

e Organization charts
o Category hierarchies
¢ Reply threads in forums

1.7 Multi-Table Join Patterns
1.7.1 The Rental Transaction Chain

Tracking a rental requires joining multiple tables:

26

10

11

12

13

14

15

16

17

inventory

customer rental

)
\> payment

1.7.2 Complete Rental Query

1.7.2.1 Query

SELECT
c.first_name || ' ' || c.last_name AS customer,
f.title,
r.rental_date::date AS rented,
r.return_date::date AS returned,
p.amount

FROM customer AS c
JOIN rental AS r

ON c.customer_id = r.customer_id
JOIN inventory AS i

ON r.inventory_id = i.inventory_id
JOIN film AS f

ON i.film id = f.film_id
JOIN payment AS p

ON r.rental_id = p.rental_id
ORDER BY r.rental_date DESC

LIMIT 5;

1.7.2.2 Result

customer | title | rented | returned
—————————————————— S O
AUSTIN CINTRON | SOMETHING DUCK | 2022-07-27 | 2022-08-02
AUSTIN CINTRON | TITANS JERK | 2022-07-27 | 2022-08-01
AUSTIN CINTRON | SUNRISE LEAGUE | 2022-07-27 | 2022-07-28

27

film

10

11

12

13

14

15

16

17

1.7.2.3 Join Path

customer to rental via customer_id

inventory to film via film_id
rental to payment via rental_id

Ll o

1.7.3 Actor Filmography Query

1.7.3.1 Query

SELECT

a.first_name,

a.last_name,

f.title,

f.release_year,

c.name AS category
FROM actor AS a
JOIN film_actor AS fa

ON a.actor_id = fa.actor_id
JOIN film AS £

ON fa.film_id = f.film_id
JOIN film_category AS fc

ON f.film_id = fc.film_id
JOIN category AS c

ON fc.category_id = c.category_id
WHERE a.last_name = 'GUINESS'
ORDER BY f.release_year, f.title;

rental to inventory via inventory_id

1.7.3.2 Result

first_name | last_name | title | release_year | category
——————————— T St
PENELOPE | GUINESS | ACADEMY DINOSAUR | 2012 | Documentary
PENELOPE | GUINESS | ANACONDA CONFESSIONS| 2020 | Animation

1.7.3.3 Query Structure

Five tables joined through their foreign key relationships.

28

10

11

12

13

1.7.4 Join on Multiple Columns

Sometimes joins need multiple columns to match correctly:

1.7.4.1 Query

SELECT
p-payment_id,
.customer_id,
.rental_id,
.amount,

R T T o

.rental_date: :date
FROM payment AS p
JOIN rental AS r
ON p.rental_id = r.rental_id
AND p.customer_id = r.customer_id
WHERE p.customer_id = 1
ORDER BY r.rental_date

LIMIT 5;

1.7.4.2 Result

payment_id | customer_id | rental_id | amount | rental_date
——————————— 1
17503 | 1 | 76 | 2.99 | 2022-05-25
17504 | 1 | 573 | 0.99 | 2022-05-28
17505 | 1 | 1185 | 5.99 | 2022-06-15

1.7.4.3 When to Use Multiple Columns

e Composite keys
¢ Data validation
o Ensuring correct matches in denormalized data

1.8 Common Pitfalls
1.8.1 Ambiguous Column Names

When two tables have the same column name:

29

1.8.1.1 Error

SELECT
customer_id, -- Ambiguous!
first_name,
last_name
FROM customer
JOIN rental
ON customer.customer_id = rental.customer_id;

ERROR: column reference "customer_id" is ambiguous

1.8.1.2 Fixed

SELECT
c.customer_id, -- Qualified with alias
c.first_name,
c.last_name
FROM customer AS c
JOIN rental AS r
ON c.customer_id = r.customer_id;

1.8.2 Missing Join Conditions

Forgetting the ON clause creates a cross join:

1.8.2.1 Problem

—-- This creates a cross join!
SELECT f.title, c.name

FROM film AS f, category AS c
LIMIT 5;

Every film paired with every category (1000 x 16 = 16,000 rows).

30

1.8.2.2 Solution

Always use explicit JOIN ... ON syntax:

1 SELECT f.title, c.name

2 FROM film AS £

3 JOIN film_category AS fc ON f.film_id = fc.film_id

4 JOIN category AS c ON fc.category_id = c.category_id
5 LIMIT 5;

1.8.3 Cartesian Explosion

Adding more tables can multiply result sizes:

film: 1000 rows

x actor: 200 rows

= 200,000 combinations?

Prevention:

e Check join conditions carefully
e Use COUNT (*) before SELECT *
e Add LIMIT during development

1.8.4 Join Verification Checklist

Before running a complex join:

1. Are all join conditions specified?
2. Are column references qualified with aliases?
3. Is this an inner or outer join?

31

10

11

12

4. Could any join create a Cartesian product?
5. Have I tested with LIMIT first?

1.9 Practice Problems

1.9.1 Practice 1: Store Revenue by Category

1.9.1.1 Challenge

For each store, find total revenue by film category.

Return:

e store_id
e category
e total_revenue

Order by store_id, then total_revenue descending.

1.9.1.2 Solution

SELECT
i.store_id,
c.name AS category,
SUM(p.amount) AS total_revenue
FROM payment AS p
JOIN rental AS r ON p.rental_id = r.rental_id

JOIN inventory AS i ON r.inventory_id = i.inventory_id

JOIN film AS £ ON i.film_id = f.film_id

JOIN film_category AS fc ON f.film_id = fc.film_id
JOIN category AS c ON fc.category_id = c.category_id

GROUP BY i.store_id, c.name
ORDER BY i.store_id, total_revenue DESC;

1.9.1.3 Result

store_id | category | total_revenue
_________ o
1 | Sports | 4892.19

1 | Sci-Fi | 4756.98

1 | Animation | 4656.30

32

1.9.2 Practice 2: Actors Without Films

1.9.2.1 Challenge
Find any actors who have no films in the database.

Return:

e actor_id
e first_name
e last_name

Order by last_name, first_name.

1.9.2.2 Solution

SELECT
a.actor_id,
a.first_name,
a.last_name
FROM actor AS a
LEFT JOIN film_actor AS fa
ON a.actor_id = fa.actor_id
WHERE fa.film_id IS NULL
ORDER BY a.last_name, a.first_name;

1.9.2.3 Result

actor_id | first_name | last_name
_________ +____________+__________

(0 rows - all actors have films in this database)

1.9.3 Practice 3: Customer Rental History

1.9.3.1 Challenge
Create a rental history for customer MARY SMITH (customer id = 1).

Return:

e rental_date
e title
e category

33

10

11

12

13

14

15

e amount

Order by rental_date descending. Limit to 10 rows.

1.9.3.2 Solution

SELECT
r.rental_date::date,
f.title,
c.name AS category,
p.amount

FROM customer AS cu

JOIN rental AS r ON cu.customer_id = r.customer_id
JOIN payment AS p ON r.rental_id = p.rental_id

JOIN inventory AS i ON r.inventory_id = i.inventory_id
JOIN film AS f ON i.film_id = f.film_id

JOIN film_category AS fc ON f.film_id = fc.film_id
JOIN category AS c ON fc.category_id = c.category_id
WHERE cu.customer_id = 1

ORDER BY r.rental_date DESC

LIMIT 10;

1.10 Key Takeaways

1.10.1 Join Type Summary

Join Type Returns NULL Handling
INNER JOIN Only matching rows No NULLs from join
LEFT JOIN All left + matched NULLs for unmatched right
right
RIGHT JOIN All right + matched NULLs for unmatched left
left
FULL OUTER JOIN All rows from both NULLs for unmatched on both sides
CROSS JOIN All combinations No join condition
SELF JOIN Table joined to itself Depends on join type used

1.10.2 Best Practices

1. Always use table aliases for readability
2. Qualify all column references to avoid ambiguity

34

3. Use explicit JOIN syntax instead of comma-separated tables
4. Put join conditions in ON, filters in WHERE

5. Test with LIMIT before running full queries

6. Verify row counts to catch Cartesian products

1.10.3 Exit Ticket

Write a query that answers:
Which films were rented in 2022 by customers from store 17
Return the customer name, film title, and rental date.

Be ready to share your join path and key columns.

1.11 References
1.11.1 References

1. Forta, B. (2024). SQL in 10 Minutes a Day (6th ed.). Addison-Wesley.

2. PostgreSQL Documentation. SELECT - Joins. https://www.postgresql.org/docs/cur-
rent /queries-table-expressions.html

3. Silberschatz, A., Korth, H., & Sudarshan, S. (2019). Database System Concepts (7th ed.).
McGraw-Hill.

35

	Joining Tables

