Lecture 03: Data Types, Importing Data, and

SQL Math

DATA 503: Fundamentals of Data Engineering
Lucas P. Cordova, Ph.D.
2026-01-19

This lecture covers the data types, importing data, and SQL math.

Table of contents

1 Part 1: Getting Data Into PostgreSQL
2 Data Types: Choosing Wisely

3 Part 2: Math Operators and Functions
4 Aggregate Functions

5 Part 3: Statistics and Percentiles

6 Date Arithmetic

7 Homework 2 Preview

0.1 Today’s Agenda

Part 1: Hands-On Setup + Data Types

o Import our sample dataset
e Understanding PostgreSQL data types
e Choosing the right type for your data

13
18
24
28

31

0.2 Today’s Agenda (continued)

Part 2: Math Operators and Functions

e Arithmetic in SQL
¢ Rounding, absolute values, and precision
o Aggregate functions (SUM, AVG, COUNT)

0.3 Today’s Agenda (continued)

Part 3: Statistical Functions + Assignment Preview

¢ Finding medians and percentiles
o Date arithmetic and intervals
e Homework 2 walkthrough

1 Part 1: Getting Data Into PostgreSQL

1.1 Why Not Just INSERT Everything?

Imagine you have 65,000 survey responses...

INSERT INTO survey VALUES (1, 'USA', 'Developer', 85000);
INSERT INTO survey VALUES (2, 'UK', 'Designer', 72000);
INSERT INTO survey VALUES (3, 'Germany', 'Developer', 91000);
-— ... 64,997 more times

This is:

o Slow (each INSERT is a separate transaction)
o Error-prone (one typo and you start over)
o Painful (your fingers will hate you)

Solution: Bulk import with \COPY

1.2 The Office: Our Sample Dataset

Today we will work with some Dunder Mifflin employee data again.

1.3 The Dataset

employee_id full_name department salary_usd
1 Michael Scott Management 75000.00
2 Dwight Schrute Sales 62000.00
3 Pam Beesly Reception 42000.00
4 Jim Halpert Sales 61000.00

1.4 Expanded Dataset for Today

I have added a few more employees and columns so we can practice more SQL:

em- performance_ rat-

ployee__id full_name department salary usd ing years__experience

1 Michael Manage- 75000.00 3.2 15
Scott ment

2 Dwight Sales 62000.00 4.8 12
Schrute

3 Pam Reception 42000.00 3.9 8
Beesly

4 Jim Sales 61000.00 4.1 10
Halpert

5 Angela Accounting 52000.00 4.5 11
Martin

6 Kevin Accounting 48000.00 2.1 9
Malone

7 Oscar Accounting 54000.00 4.7 13
Martinez

8 Stanley Sales 58000.00 3.0 20
Hudson

1.5 Hands-On: Create the CSV File
Step 1: Create a file named employees_import.csv, I recommend in your Downloads directory
for now.

Copy this exact content (hover over the data and click the copy button that appearsto the
right):

employee_id,full_name,department,email ,hire_date,salary_usd,is_manager,performance_rating,ye
1,Michael Scott,Management,michael.scott@dundermifflin.com,2005-03-24,75000.00,true,3.2,15,,:
2,Dwight Schrute,Sales,dwight.schrute@dundermifflin.com,2006-04-12,62000.00,false,4.8,12,0.0
3,Pam Beesly,Reception,pam.beesly@dundermifflin.com,2007-07-02,42000.00,false,3.9,8,,

4,Jim Halpert,Sales, jim.halpert@dundermifflin.com,2005-10-05,61000.00,false,4.1,10,0.07,2026
5,Angela Martin,Accounting,angela.martin@dundermifflin.com,2006-08-15,52000.00,false,4.5,11,
6,Kevin Malone,Accounting,kevin.malone@dundermifflin.com,2007-02-28,48000.00,false,2.1,9,,20
7,0scar Martinez,Accounting,oscar.martinez@dundermifflin.com,2005-06-01,54000.00,false,4.7,1.
8,Stanley Hudson,Sales,stanley.hudson@dundermifflin.com,2004-11-20,58000.00,false,3.0,20,0.0

1.6 Hands-On: Move the CSV to a Safe Location

Why a “safe” location?
PostgreSQL needs permission to read your file. Some folders are restricted.

macOS / Linux:

cp ~/Downloads/employees_import.csv /tmp/employees_import.csv
1s -1 /tmp/employees_import.csv

Windows (PowerShell):

Copy-Item $HOME\Downloads\employees_import.csv C:\Users\Public\employees_import.csv
Get-Item C:\Users\Public\employees_import.csv

1.7 Hands-On: Connect to PostgreSQL

Open your terminal and connect:
psql -U postgres -h localhost

You should see a prompt like:

postgres=#

Warning

o If your prompt spits out command not found: psql or something similar, psql is
not in your PATH. Check out the resource on Canvas — Week 2 Lesson Plan —
Adding PSQL to your PATH.

e If you see psql: could not connect to server: No such file or directory
or something similar, you are not connected to the database or there are credential

issues. Try psql -U postgres -h localhost instead.

1.8 Hands-On: Create the Database

At the postgres=# prompt, run:

DROP DATABASE IF EXISTS office_db;
CREATE DATABASE office_db;
\c office_db

You should see:

You are now connected to database "office_db" as user "postgres".

1 Note

The \¢c command connects you to the new database.

1.9 Hands-On: Create the Table

Now we need a table that matches our CSV columns exactly. Copy this exact content (hover
over the data and click the copy button that appears to the right):

CREATE TABLE employees (

employee_id INTEGER PRIMARY KEY,
full_name TEXT NOT NULL,
department TEXT NOT NULL,

email TEXT,

hire_date DATE NOT NULL,
salary_usd NUMERIC(10,2) NOT NULL,
is_manager BOOLEAN NOT NULL,

performance_rating NUMERIC(2,1),
years_experience INTEGER,
commission_rate NUMERIC(3,2),
last_login TIMESTAMP

)

Verify with \d employees to see the structure.

1.10 Understanding the CREATE TABLE Statement

Column Name

Data Type

Constraints

Next Columi

Each column definition has:

o Name: What you call the column (e.g., salary_usd)

o Data Type: What kind of data it holds (e.g., NUMERIC(10,2))

o Constraints: Rules the data must follow (e.g., NOT NULL)

1.11 Hands-On: Import the CSV

The moment of truth!

macOS / Linux:

\COPY employees FROM '/tmp/employees_import.csv' WITH (FORMAT csv, HEADER true)

Windows:

\COPY employees FROM 'C:\Users\Public\employees_import.csv' WITH (FORMAT csv, HEADER true)

You should see: COPY 8

That means 8 rows were imported successfully!

1.12 Hands-On: Verify Your Data

Count the rows:

SELECT COUNT(*) FROM employees;

View all the data:

SELECT * FROM employees ORDER BY employee_id

count

Take a moment to verify the data looks correct.

b

1.13 The Anatomy of \COPY

1 \COPY employees FROM '/tmp/employees_import.csv' WITH (FORMAT csv, HEADER true)

Let’s break this down:

Part Meaning

\COPY Client-side copy command
employees Target table name

FROM '/tmp/...' Source file path

FORMAT csv File is comma-separated
HEADER true First row is column names

1.14 \COPY vs COPY: What’s the Difference?

Feature \COPY COPY

Runs on Your computer (client) Database server

File location Your filesystem Server filesystem
Permissions Your user permissions postgres user permissions
Best for Development, small files Production, large files

Rule of thumb: Use \COPY in this class. It is safer and easier.

1.15 Exercise: Check Your Import

Write queries to answer (work with a neighbor if your system is acting up):

1. How many employees are in the Sales department?
2. What is Michael Scott’s email?
3. Which employee has the highest performance rating?

Take 3 minutes, then we will review.

1.16 Exercise Solutions

1. Sales department count:

1 SELECT COUNT(*) FROM employees WHERE department = 'Sales';

count

2. Michael’s email:

1 SELECT email FROM employees WHERE full_name = 'Michael Scott';

email

michael.scott@Qdundermifflin.com

3. Highest performance rating:

1 SELECT full_name, performance_rating
2 FROM employees

3 ORDER BY performance_rating DESC

4 LIMIT 1;

full_name performance_ rating

Dwight Schrute 4.8

2 Data Types: Choosing Wisely

2.1 Why Data Types Matter

Consider this question: What is '10' + '5'?7

o In some languages: '105' (string concatenation)
o In math: 15 (addition)

Warning

Data types tell PostgreSQL how to interpret and operate on your data.
Wrong data type = wrong results, wasted storage, or errors.

2.2 PostgreSQL Data Type Categories

REAL NUMERIC
CHAR
INTEGER
Numbers
Text
BOOLEAN
Data Types
Other
ARRAY
JSON
2.3 Numeric Types: The Big Three

Type Description Example

INTEGER Whole numbers 42, -7, 1000000

NUMERIC(p,s) Exact decimals 75000.00, 3.14159

REAL Approximate decimals Scientific calculations

When to use each:

e INTEGER: Counts, IDs, quantities
e NUMERIC: Money, precise measurements
e REAL: Scientific data where approximation is OK

VARCHAR

TEXT

2.4 NUMERIC(precision, scale) Explained

1 salary_usd NUMERIC(10,2)

o Precision (10): Total digits allowed
o Scale (2): Digits after decimal point

Value Valid for NUMERIC(10,2)?

75000.00 Yes (7 digits total)
123456789.99 No (11 digits total)
75000.001 Rounded to 75000.00

2.5 Quick Check: Our Employee Table

Look at how we defined numeric columns:

1 salary_usd NUMERIC(10,2) -— Up to 99,999,999.99
> performance_rating NUMERIC(2,1) -- 0.0 to 9.9

3 commission_rate NUMERIC(3,2) -- 0.00 to 9.99

4 Yyears_experience INTEGER -- Whole years only

Question: Why not use INTEGER for salary?

Because we want cents! $75,000.00 not $75000

2.6 Text Types: Three Flavors

Type Description Use Case

CHAR(n) Fixed length, padded Codes like state abbreviations
VARCHAR(n) Variable length, max n Names, emails with limits
TEXT Unlimited length Long descriptions, notes

i Note

In practice: TEXT and VARCHAR are equally fast in PostgreSQL.
I generally use TEXT unless I have a specific length constraint.

10

2.7 Date and Time Types

Type Stores Example
DATE Year, month, day '2026-01-15"
TIME Hour, minute, second '09:30:00'

TIMESTAMP Both date and time '2026-01-15 09:30:00'

Our table uses:

hire_date DATE -- Just the date they started
last_login TIMESTAMP -- Date AND time of login

2.8 Boolean: True or False

The BOOLEAN type stores TRUE or FALSE.

PostgreSQL accepts multiple formats:

True Values False Values

TRUE, 't', 'yes', '1' FALSE, 'f', 'no', '0'

SELECT full_name, is_manager
FROM employees
WHERE is_manager = TRUE;

full name is__manager

Michael Scott t

2.9 NULL: The Absence of Data

NULL means “unknown” or “not applicable.”

Look at our data for commissions:

SELECT full_name, commission_rate, last_login
FROM employees
WHERE commission_rate IS NULL;

11

full name commission_rate last_ login

Michael Scott NULL 2026-01-15 09:12:00
Pam Beesly NULL NULL
Angela Martin NULL 2026-01-15 07:45:00

1 Note

Pam has no commission (not in sales) AND no last_login (maybe she uses paper).

2.10 NULL Gotchas

NULL is not equal to anything, not even itself!

-- This finds NOTHING:
SELECT * FROM employees WHERE commission_rate = NULL;

—-- This works:
SELECT * FROM employees WHERE commission_rate IS NULL;

2.11 NULL Gotchas: Math with NULL

Math with NULL returns NULL

SELECT 100 + NULL; -- Returns NULL
SELECT NULL * 5; —— Returns NULL
1 Note

We will learn to handle this with COALESCE and NULLIF later.

2.12 Exercise: Data Type Detective

Look at this data and choose the best PostgreSQL data type:

. Social Security Number: '123-45-6789'
. Product price: $29.99

. Is item in stock: yes or no

. Number of items in warehouse: 1,547

O R

12

5. Customer review text: 'Great product! Would buy again...'

Take 2 minutes to decide, then we discuss.

2.13 Exercise: Data Type Answers

1. SSN: CHAR(11) or VARCHAR(11) - It is text, not a number (leading zeros, dashes)
Price: NUMERIC(10,2) - Money needs exact precision
In stock: BOOLEAN - True/false value

Warehouse count: INTEGER - Whole numbers only

RANEE- S

Review text: TEXT - Variable length, potentially long

2.14 Next up: Math Operators and Functions

Stretch or grab coffee, then verify your import worked.

—— Quick verification
SELECT COUNT(*) FROM employees;
—— Should return 8

3 Part 2: Math Operators and Functions

3.1 SQL as a Calculator

PostgreSQL can do math! Let’s start simple:

SELECT 2 + 2;

?column?

4

No table needed. SQL evaluates the expression and returns the result.

3.2 Basic Math Operators

13

Operator Operation Example Result
+ Addition 5+ 3 8
- Subtraction 10 - 4 6
* Multiplication 6 * 7 42
/ Division 15/ 4 3
yA Modulo (remainder) 15 % 4 3

Wait, what?

15 / 4 = 37 d Yes! Integer division truncates.

3.3 Integer Division Trap

SELECT 15 / 4; --
SELECT 15.0 / 4; --
SELECT 15 / 4.0; --
SELECT 15::NUMERIC / 4;

Returns 3 (integer division)
Returns 3.75 (decimal division)
Returns 3.75 (decimal division)
-- Returns 3.75 (cast to numeric)

1 Note

Rule: If both operands are integers, result is integer.
Make at least one operand a decimal to get decimal results.

3.4 Hands-On: Math with Employee Data

Calculate annual bonus (10% of salary):

SELECT
full name,
salary_usd,
salary_usd * 0.10 AS
FROM employees;

annual _bonus

full name salary_usd

annual_bonus

Michael Scott 75000.00
Dwight Schrute 62000.00
Pam Beesly 42000.00

7500.0000
6200.0000
4200.0000

14

3.5 Calculating Percent Change

The formula: ((new - old) / old) * 100
Example: If salary goes from $50,000 to $55,000:

SELECT ((55000 - 50000) / 50000.0) * 100 AS pct_increase;

pct__increase

10.0

A 10% raise. (Nice!)

3.6 Hands-On: Salary Per Year of Experience

How much does each employee earn per year of experience?

SELECT

full _name,

salary_usd,

years_experience,

ROUND(salary_usd / years_experience, 2) AS salary_per_year
FROM employees
ORDER BY salary_per_year DESC;

full name salary_usd years_experience salary_ per_ year
Pam Beesly 42000.00 8 5250.00
Jim Halpert 61000.00 10 6100.00
Dwight Schrute 62000.00 12 5166.67

3.7 The ROUND() Function

ROUND (value, decimal_places) rounds to specified precision:

SELECT ROUND(3.14159, 2); -- Returns 3.14

SELECT ROUND(3.14159, 0); -- Returns 3

SELECT ROUND(3.5, 0); -- Returns 4 (rounds up)

SELECT ROUND(2.5, 0); -- Returns 3 (banker's rounding)

15

i Note

Always ROUND money calculations for clean output!

3.8 The ABS() Function

ABS() returns the absolute value (distance from zero):

SELECT ABS(-42); -- Returns 42
SELECT ABS(42); -- Returns 42
SELECT ABS(0); -- Returns 0

3.9 Using ABS()

Use case: Finding differences regardless of direction:

SELECT

full name,

salary_usd,

ABS(salary_usd - 55000) AS distance_from_average
FROM employees;

3.10 Hands-On: Distance from Average Salary

Let’s find how far each employee’s salary is from $55,000:

SELECT
full name,
salary_usd,
salary_usd - 55000 AS difference,
ABS(salary_usd - 55000) AS absolute_difference
FROM employees
ORDER BY absolute_difference DESC;

full name salary_usd difference absolute_ difference
Michael Scott 75000.00 20000.00 20000.00
Pam Beesly 42000.00 -13000.00 13000.00

Dwight Schrute 62000.00 7000.00 7000.00

16

3.11 Exponents and Roots

Function Description Example Result
- Exponentiation 2~ 3 8
\l/ Square root \I/ 16 4
\INI/ Cube root \INI/ 27 3
SQRT() Square root (function) SQRT(16) 4

SELECT
|/ 25 AS square_root,
SQRT(25) AS also_square_root,
2 7 10 AS two_to_the_tenth;

3.12 Exercise: Calculate Commission

Sales employees have a commission rate. Calculate their potential commission on a $10,000
sale:

SELECT

full_name,

commission_rate,

-— Your calculation here: commission on $10,000 sale
FROM employees
WHERE commission_rate IS NOT NULL;

Hint: Commission = sale amount * commission rate

Take 2 minutes.

3.13 Exercise Solution: Commission Calculation

SELECT

full_name,

commission_rate,

10000 * commission_rate AS commission_on_10k
FROM employees
WHERE commission_rate IS NOT NULL;

full name commission_rate commission on_ 10k

Dwight Schrute 0.08 800.00

17

full name commmission rate commission on 10k

Jim Halpert 0.07 700.00
Stanley Hudson 0.05 500.00

Dwight’s higher rate reflects his #1 salesman status. Obviously.

4 Aggregate Functions

4.1 What Are Aggregate Functions?

Aggregate functions compute a single result from multiple rows.

Row 1: 75000

Row 2: 62000

SUM Result: 240000

Row 3: 42000

Row 4: 61000

4.2 The Big Five Aggregates

Function Description Example

SUMQO) Total of all values Total payroll

18

Function Description Example

AVG(O) Average (mean) Average salary
COUNT() Number of rows How many employees
MINQO Smallest value Lowest salary
MAX Q) Largest value Highest salary

4.3 SUM(): Total Values

What is our total payroll?

SELECT SUM(salary_usd) AS total_payroll
FROM employees;

total _payroll
452000.00

We spend $452,000 on salaries. (Michael probably thinks he deserves half.)

4.4 AVG(): Calculate the Mean

What is the average salary?

SELECT AVG(salary_usd) AS avg_salary
FROM employees;

avg_salary

56500.000000

That is a lot of decimal places. Let’s fix that:

SELECT ROUND(AVG(salary_usd), 2) AS avg_salary
FROM employees;

avg_ salary

56500.00

19

4.5 COUNT(): How Many?

Three ways to count:

—— Count all rows
SELECT COUNT(*) FROM employees;

-- Count non-NULL values in a column
SELECT COUNT(commission_rate) FROM employees;

—-- Count distinct values
SELECT COUNT(DISTINCT department) FROM employees;

count(*) count(commission) count(distinct dept)

8 3 4

Only 3 employees have commission rates!

4.6 MIN() and MAX(): The Extremes

Salary range:

SELECT
MIN(salary_usd) AS lowest_salary,
MAX (salary_usd) AS highest_salary,
MAX(salary_usd) - MIN(salary_usd) AS salary_range
FROM employees;

lowest__salary highest_salary salary_range

42000.00 75000.00 33000.00

Pam makes the least, Michael makes the most. Shocking.

4.7 Combining Multiple Aggregates

You can calculate several aggregates in one query:

20

SELECT
COUNT(*) AS num_employees,
SUM(salary_usd) AS total_payroll,
ROUND (AVG(salary_usd), 2) AS avg_salary,
MIN(salary_usd) AS min_salary,
MAX (salary_usd) AS max_salary

FROM employees;

num_ employees total payroll avg salary min_ salary

max_ salary

8 452000.00 56500.00 42000.00

75000.00

4.8 GROUP BY: Aggregates by Category

What if we want average salary BY DEPARTMENT?

SELECT
department,
COUNT(*) AS num_employees,
ROUND (AVG(salary_usd), 2) AS avg_salary
FROM employees
GROUP BY department
ORDER BY avg_salary DESC;

department num_ employees avg salary

Management 1 75000.00
Sales 3 60333.33
Accounting 3 51333.33
Reception 1 42000.00

21

4.9 How GROUP BY Works

All Employees

GROUP BY department

Management Group Sales Group Accounting Group [

AVG: 75000 AVG: 60333 AVG: 51333

GROUP BY splits data into buckets, then aggregates each bucket separately.

4.10 HAVING: Filter After Grouping

Show only departments with more than 1 employee:

1 SELECT
2 department,
3 COUNT(*) AS num_employees,

22

ROUND (AVG(salary_usd), 2) AS avg_salary
FROM employees
GROUP BY department
HAVING COUNT(*) > 1
ORDER BY avg_salary DESC;

department num_ employees avg salary

Sales 3 60333.33
Accounting 3 51333.33

WHERE filters rows BEFORE grouping. HAVING filters AFTER grouping.

4.11 Exercise: Department Analysis

Write a query that shows for each department:

e Department name

e Number of employees

o Total salary expense

o Average performance rating (rounded to 1 decimal)

Only include departments where average performance rating > 3.5

Take 4 minutes.

4.12 Exercise Solution

SELECT
department,
COUNT (*) AS num_employees,
SUM(salary_usd) AS total_salary,
ROUND (AVG (performance_rating), 1) AS avg_rating
FROM employees
GROUP BY department
HAVING AVG(performance_rating) > 3.5
ORDER BY avg_rating DESC;

department num_ employees total salary avg rating

Accounting 3 154000.00 3.8
Sales 3 181000.00 3.6

23

Management and Reception did not make the cut!

4.13 10 Minute Break

When we return: Statistical functions and percentiles!

Up next: Finding the median (and why it matters more than average).

5 Part 3: Statistics and Percentiles

5.1 The Problem with Averages

Pop quiz: A company has 5 employees with these salaries:
$40,000, $42,000, $45,000, $48,000, $500,000

What is the average salary?

SELECT AVG(salary) FROM company;
-- Returns: $135,000

Is $135,000 a good representation of “typical” salary? No!
The CEQO’s salary skews the average dramatically.

5.2 Median: The Middle Value

The median is the middle value when data is sorted.
$40,000, $42,000, $45,000, $48,000, $500,000

The median is $45,000, which better represents “typical.”

@ Tip
When to use which:

o Mean (average): Data is normally distributed, no outliers
e Median: Data is skewed or has outliers

24

5.3 Finding Median with percentile_cont()

PostgreSQL does not have a built-in MEDIAN() function, but we can use:

SELECT
percentile_cont(0.5) WITHIN GROUP (ORDER BY salary_usd) AS median_salary
FROM employees;

median_ salary

55000

The 0.5 means “50th percentile” which is the median.

5.4 The WITHIN GROUP Syntax

percentile_cont(0.5) WITHIN GROUP (ORDER BY salary_usd)

Let’s break this down:

Part Meaning

percentile_cont(0.5) Find the 50th percentile (median)
WITHIN GROUP Required syntax for ordered-set aggregates
ORDER BY salary_usd Which column to calculate percentile on

5.5 Hands-On: Median vs Average

Compare median and average for our employee salaries:

SELECT

ROUND (AVG (salary_usd), 2) AS mean_salary,

percentile_cont(0.5) WITHIN GROUP (ORDER BY salary_usd) AS median_salary
FROM employees;

mean_ salary median_ salary

56500.00 55000

Pretty close! Our data does not have extreme outliers.

25

5.6 What is a Percentile?

A percentile tells you what percentage of values fall below a point.

o 25th percentile: 25% of values are below this
o 50th percentile: 50% are below (the median)
e 75th percentile: 75% are below this
e 90th percentile: 90% are below this

If you score in the 90th percentile on a test, you beat 90% of test-takers.

5.7 Calculating Quartiles

Quartiles divide data into four equal parts:

SELECT
percentile_cont(0.25) WITHIN GROUP (ORDER BY salary_usd) AS qil,
percentile_cont(0.50) WITHIN GROUP (ORDER BY salary_usd) AS g2_median,
percentile_cont(0.75) WITHIN GROUP (ORDER BY salary_usd) AS g3

FROM employees;

ql q2_median q3
49000 55000 61250

5.8 Using Arrays for Multiple Percentiles

Instead of separate function calls, use an array:

SELECT
percentile_cont (ARRAY[0.25, 0.5, 0.75])
WITHIN GROUP (ORDER BY salary_usd) AS quartiles
FROM employees;

quartiles

{49000,55000,61250}

The result is an array. Curly braces indicate array values.

26

5.9 percentile_cont vs percentile_disc

Two versions exist:

Function Behavior Best For

percentile_cont Interpolates between values Continuous data
percentile_disc Returns actual value from data Discrete data

SELECT
percentile_cont(0.5) WITHIN GROUP (ORDER BY salary_usd) AS cont,
percentile_disc(0.5) WITHIN GROUP (ORDER BY salary_usd) AS disc
FROM employees;

@ Tip

For salaries, percentile_cont is usually more appropriate.

5.10 Exercise: Salary Percentile Analysis

Write a query that shows:

e The 10th percentile salary (low end)
e The median salary
o The 90th percentile salary (high end)

Use a single percentile_cont call with an array.

Take 2 minutes.

5.11 Exercise Solution

SELECT
percentile_cont (ARRAY[0.10, 0.50, 0.90])
WITHIN GROUP (ORDER BY salary_usd) AS salary_percentiles
FROM employees;

salary_ percentiles

{43400,55000,69550}

Interpretation:

27

e 10% of employees make less than $43,400
o 50% make less than $55,000 (median)
e 90% make less than $69,550

6 Date Arithmetic

6.1 Working with Dates in PostgreSQL

PostgreSQL makes date math intuitive:

SELECT '2026-01-15'::DATE - '2025-01-15'::DATE AS days_between;

days_ between

365

Subtracting dates gives you the number of days between them.

6.2 Hands-On: Calculate Tenure

How long has each employee been with the company?

SELECT

full name,

hire_date,

CURRENT_DATE AS today,

CURRENT_DATE - hire_date AS days_employed
FROM employees
ORDER BY days_employed DESC;

full name hire_date today

days__employed

Stanley Hudson 2004-11-20 2026-01-19
Michael Scott 2005-03-24 2026-01-19
Jim Halpert 2005-10-05 2026-01-19

7730
7606
7411

28

6.3 EXTRACT(): Pull Parts from Dates

EXTRACT (part FROM date) gets specific components:

SELECT
full_name,
hire_date,
EXTRACT(YEAR FROM hire_date) AS hire_year,
EXTRACT (MONTH FROM hire_date) AS hire_month,
EXTRACT(DOW FROM hire_date) AS day_of_week
FROM employees;

full name hire_date hire_year hire_month day_of week

Michael Scott 2005-03-24 2005 3 4

DOW = Day of Week (0=Sunday, 1=Monday, etc.)

6.4 DATE_PART(): Alternative Syntax

DATE_PART('part', date) does the same thing:

SELECT
full name,
DATE_PART('year', hire_date) AS hire_year,
DATE_PART('quarter', hire_date) AS hire_quarter
FROM employees;

full name hire_year hire_ quarter
Michael Scott 2005 1
Angela Martin 2006 3

Use whichever syntax you prefer. They are equivalent.

6.5 Grouping by Date Parts

How many employees were hired each year?

29

SELECT
EXTRACT(YEAR FROM hire_date) AS hire_year,
COUNT(*) AS num_hired

FROM employees

GROUP BY EXTRACT(YEAR FROM hire_date)

ORDER BY hire_year;

hire_year num_ hired

2004 1
2005 3
2006 2
2007 2

6.6 Interval Arithmetic

You can add intervals to dates:

SELECT
hire_date,
hire_date + INTERVAL 'l year' AS one_year_later,
hire_date + INTERVAL 'S0 days' AS ninety_days_later
FROM employees
WHERE full_name = 'Jim Halpert';

hire_date one_year later ninety days later

2005-10-05 2006-10-05 2006-01-03

6.7 Exercise: Login Analysis

Write a query that shows:

o Employee name
o Their last login date/time
o How many days ago they logged in (from CURRENT DATE)

Only include employees who HAVE logged in (not NULL).
Order by most recent login first.

Take 3 minutes.

30

6.8 Exercise Solution

SELECT
full name,
last_login,
CURRENT_DATE - last_login::DATE AS days_since_login
FROM employees
WHERE last_login IS NOT NULL
ORDER BY last_login DESC;

full__name last_ login days_ since_ login

Dwight Schrute 2026-01-16 08:01:00 3
Jim Halpert 2026-01-16 08:03:00 3
Kevin Malone 2026-01-16 09:30:00 3

Note: I cast last_login to DATE to get whole days.

7 Homework 2 Preview

7.1 Assignment Overview

Homework 2 covers everything we learned today:

e Q1: CREATE TABLE with correct data types
e Q2: Import data with \COPY

e Q3-Q5: Math operators and aggregates

e Q6-QT7: Percentile functions

¢ Q8-Q10: Date arithmetic and grouping

You will use the stackoverflow database with three tables:

o currency_rates (CSV). Create table and import a CSV.
o country_stats (SQL to execute)
o response_timeline (SQL to execute)

31

7.2 Q1 and Q2 Tips: Creating and Importing

You will define a currency_rates table based on sample CSV data.

Sample data you will see:

rate_date,currency_code,currency_name,exchange_rate,is_major_currency
2025-01-01,0SD,US Dollar,1.000000,true
2025-01-01,EUR,Euro,0.8523, true

Choose types carefully:

e rate_date needs a DATE type
e currency_code is always 3 characters
e exchange_rate needs decimal precision

7.3 Q3 and Q4 Tips: Math Functions

Q3 asks for ABS():

Remember that ABS gives the distance from zero:
ABS(exchange_rate - 1.0) -- Distance from USD rate
Q4 asks for ROUND() and percentages:

ROUND ((part / whole) * 100, 2) -- Two decimal places

Watch for integer division! Cast if needed.

7.4 Q5 Tips: GROUP BY with HAVING

You will group by currency and filter with HAVING.
Common mistake: Using WHERE instead of HAVING for aggregate conditions.

—-—- WRONG: WHERE cannot filter on aggregates
SELECT currency_code, COUNT (x)

FROM currency_rates

WHERE COUNT(*) = 12 -- ERROR!

GROUP BY currency_code;

—-- RIGHT: Use HAVING for aggregate conditions
SELECT currency_code, COUNT (%)

32

10

11

FROM currency_rates
GROUP BY currency_code
HAVING COUNT(*) = 12; -- Correct!

7.5 Q6 and Q7 Tips: Percentiles

Q6: Finding the median
percentile_cont(0.5) WITHIN GROUP (ORDER BY column_name)

Do not forget WITHIN GROUP! It is required.

Q7: Using arrays for quartiles
percentile_cont (ARRAY[0.25, 0.5, 0.75]) WITHIN GROUP (ORDER BY column_name)

The ARRAY keyword is essential.

7.6 Q8 and Q9 Tips: Date Arithmetic

Q8: Subtracting dates gives days:

response_date - survey_start_date AS days_since_start
Q9: EXTRACT for grouping by time parts:

EXTRACT (MONTH FROM rate_date) AS month_num

Remember to GROUP BY the same expression you SELECT.

7.7 Q10 Tips: Self-Join

The hardest question! You need to compare January and December rates.

Strategy: Join the table to itself:

FROM currency_rates jan
JOIN currency_rates dec
ON jan.currency_code = dec.currency_code
WHERE jan.rate_date = '2025-01-01'
AND dec.rate_date = '2025-12-01'

Use table aliases (jan, dec) to distinguish the two instances.

33

7.8 Common Mistakes to Avoid

1. Forgetting to alias calculated columns

-- Bad: No alias
SELECT salary * 0.10 FROM employees;

-- Good: Clear alias
SELECT salary * 0.10 AS bonus FROM employees;

2. Integer division giving wrong results

-- Returns O (integer division)
SELECT 3 / 4;

-- Returns 0.75
SELECT 3.0 / 4;

3. Using WHERE instead of HAVING with aggregates

7.9 Testing Your Queries Locally

Before submitting;:

1. Run your query in Beekeeper Studio or psql

2. Verify the output looks reasonable

3. Check that column aliases match what the question asks

4. Make sure ORDER BY direction is correct (ASC vs DESC)

Pro tip: Start simple, then add complexity.

7.10 Questions?

Topics we covered today:

o Data types (INTEGER, NUMERIC, TEXT, DATE, BOOLEAN)
o Importing data with \COPY

o Math operators (+, -, *, /, %, ABS, ROUND)

o Aggregates (SUM, AVG, COUNT, MIN, MAX)

o Percentiles (percentile cont with WITHIN GROUP)

o Date arithmetic (subtraction, EXTRACT)

What questions do you have?

34

7.11 Next Week Preview

Chapter 6: Joining Tables

We will learn how to combine data from multiple tables:

SELECT employees.name, departments.budget
FROM employees
JOIN departments ON employees.dept_id = departments.id;

This is where SQL gets really powerful!

7.12 Thank You!

Reminders:

¢ Homework 2 due date: Check Canvas
e Office hours: Check Canvas for schedule
e Questions: Post on Discord or email

Good luck with the assignment!

35

	Part 1: Getting Data Into PostgreSQL
	Data Types: Choosing Wisely
	Part 2: Math Operators and Functions
	Aggregate Functions
	Part 3: Statistics and Percentiles
	Date Arithmetic
	Homework 2 Preview

