Lecture 05-1: Table Design and Constraints

DATA 503: Fundamentals of Data Engineering

Lucas P. Cordova, Ph.D.

This lecture covers the practical implementation of database table design in
PostgreSQL. After learning to normalize data and design relational schemas, we
now focus on building those tables with proper constraints. Topics include naming
conventions, primary keys (natural vs surrogate), foreign keys and referential
integrity, CHECK constraints, UNIQUE constraints, NOT NULL constraints,
modifying tables with ALTER TABLE, and speeding up queries with indexes. A

2026-02-09

music catalog dataset serves as the running example throughout.

Table of contents

1 From Design to Implementation

1 From Design to Implementation

CSV Dataset

Import to
Single Table

Normalize
(Data Model)

You have learned to import raw data into a single table and design a normalized schema. Now
we build the tables that bring that design to life. Think of it as the difference between an
architect’s blueprint and actually pouring the concrete.

with Const

1.1 The Data Engineering Pipeline

1.1.1

What Comes Next

Today we learn the DDL (Data Definition Language) skills to implement your normalized
designs:

Normalized Schema
(on paper)

CREATE TABLE
with Data Types

Add PKs and FKs

"

After today, the next step is migrating data from your staging table into the new structure
using INSERT, UPDATE, and DELETE.

1.2 Our Running Example: A Music Catalog

1.2.1

The Scenario

You work for a streaming service that just acquired a catalog of albums from a defunct record
distributor. The data arrived as a single CSV file spanning six decades of music, from Fleetwood
Mac to Beyonce. Your job is to normalize it and build proper tables.

Here is a sample of what you received:

cata- album_ ti- re- dura-

log_id artist_name tle lease_year genre label tion_min decade
CAT- Fleetwood = Rumours 1977 Rock Warner 39.4 1970s
1001 Mac Bros

CAT- Fleetwood Tango in 1987 Rock Warner 45.1 1980s
1002 Mac the Night Bros

CAT- The Abbey 1969 Rock Apple 47.4 1960s
1003 Beatles Road

CAT- The Abbey 1969 Rock Apple 47.4 1960s
1004 Beatles Road

CAT- Led Led 1971 Rock At- 42.5 1970
1005 Zepplin Zeppelin IV lantic

CAT- Beyonce Lemonade 2016 R&B Columbiats.7 2010s
1006

CAT- Beyonce Renais- 2022 Pop Columbial2.1 20s
1007 sance

10

11

12

13

14

cata- album__ ti- re- dura-

log_id artist_name tle lease_year genre label tion_min decade
CAT- Radiohead OK 1997 Alter- Par- 53.4 1990s
1008 Computer native lophone

CAT- the rolling Sticky 1971 Rock Rolling 46.3 1970s
1009 stones Fingers Stones

CAT- Whitney The 1992 Pop Arista 56.8 1990s
1010 houston Bodyguard

CAT- OutKast Stankonia, 2000 Hip- LaFace 72.9 2000s
1011 Hop

CAT- Outkast Aquemini 1998 Hip- LaFace 72.6 1990s
1012 Hop

If you are already counting problems in that table, good. We will deal with them next time.
Today we focus on building the target schema.

1.2.2 The Staging Table

First, we import the CSV into a flat staging table:

CREATE TABLE music_catalog (
catalog_id varchar(20) CONSTRAINT catalog_key PRIMARY KEY,
artist_name varchar(200),
album_title varchar(200),
release_year smallint,
genre varchar(50),
label varchar(100),
duration_min numeric(5,1),
decade varchar(10)

)3
COPY music_catalog

FROM '/path/to/album_catalog.csv'
WITH (FORMAT CSV, HEADER, DELIMITER ',');

This staging table holds raw, denormalized data. It is a holding pen, not a home.

1.2.3 Identifying Entities

Looking at the data, we can identify distinct entities:

ARTISTS

bigserial | artist_id PK
varchar | artist_name
records
ALBUMS
bigserial | album_id PK
varchar album_title
smallint | release_year
varchar genre
varchar label
numeric | duration_min
bigint artist_id FK
contains
TRACKS
bigserial | track_id PK
varchar track_title
smallint | track_number
numeric | duration_sec
bigint album_id FK

The staging table mixes artist data with album data in every row. Normalization separates
them into distinct tables with relationships.

1.2.4 The Normalized Target

Our goal is three tables:

e artists — one row per unique artist
e albums — one row per unique album, linked to an artist
e tracks — one row per track, linked to an album

The staging table gets us to artists and albums. Track data would come from a separate
source, but we will build the table structure anyway. In the real world, schemas are built for
the data you expect, not just the data you have.

Now let us learn the DDL skills to build these tables properly.

1.3 Naming Conventions
1.3.1 Why Naming Matters
Good naming conventions make your database self-documenting. A well-named schema tells

you what it contains without reading a single comment.

Bad naming leads to:

e Confusion when writing queries

¢ Bugs from misremembering column names

¢ Onboarding headaches for new team members
o Passive-aggressive comments in code reviews

1.3.2 PostgreSQL Naming Rules

PostgreSQL has specific rules for identifiers (table and column names):

o Can contain letters, digits, and underscores

o Must begin with a letter or underscore

o Are case-insensitive by default (folded to lowercase)
¢ Maximum length of 63 characters

—-— These all refer to the SAME table:

CREATE TABLE artists (...);

CREATE TABLE Artists (...); -- Error: already exists!
CREATE TABLE ARTISTS (...); -- Error: already exists!

PostgreSQL treats your shouting the same as your whispering.

1.3.3 The Case Sensitivity Trap

PostgreSQL folds unquoted identifiers to lowercase. If you use double quotes, the name becomes
case-sensitive:

CREATE TABLE "Artists" (...); -- Creates "Artists" (capital A)

SELECT * FROM artists; -— Looks for "artists" (lowercase)

SELECT * FROM "Artists"; -- Finds "Artists" (capital A)
Warning

Avoid double-quoted identifiers. They create maintenance headaches because every query
must use the exact casing with quotes. You will curse your past self at 2 AM.

1.3.4 Best Practices for Naming

Convention Example Avoid

Use snake__case release_year releaseYear, ReleaseYear
Be descriptive artist_name art_nm

Use plurals for tables artists, albums artist, album

Include context duration_min data_column_7

Prefix dates report_2026_01_15 15_01_2026_report

1.3.5 Naming: Tables vs Columns
1.3.5.1 Tables
Tables represent collections of entities. Use plural nouns:

o artists (not artist)
e albums (not album)
o tracks (not track)

1.3.5.2 Columns

Columns represent attributes. Use singular, descriptive names:

e artist_name (not artist_names)
o release_year (not years_released)
o duration_min (not dur)

1.3.5.3 Junction Tables

For many-to-many relationships, combine both table names:

e artist_genres
e album_tracks
e playlist_songs

1.4 Primary Keys
1.4.1 Recap: What Is a Primary Key?

A primary key uniquely identifies each row in a table. It provides:

¢ Uniqueness: No two rows share the same key value
¢ Non-nullability: The key value cannot be NULL
o Identity: A reliable way to reference a specific row

Every table in a well-designed database should have a primary key.

1.4.2 Two Approaches to Primary Keys

Primary Key
Natural Key Surrogate Key
Data that already System-generated
exists in the domain identifier
A
SSN, License #, serial, bigserial,
ISBN, Email uuID

1.4.3 Natural Keys

A natural key uses data that already exists and naturally identifies the entity.

CREATE TABLE natural_key_example (
license_id varchar(10) CONSTRAINT license_key PRIMARY KEY,
first_name varchar(50),
last_name varchar(50)

)

Here license_id is a real-world identifier. Each person has exactly one, and it is unique. In
theory. In practice, natural keys have a habit of being less unique than you were promised.

1.4.4 Natural Keys: Testing Uniqueness

Let us see what happens when we violate the primary key:

INSERT INTO natural_key_example (license_id, first_name, last_name)
VALUES ('T229901', 'Lynn', 'Malero');

INSERT INTO natural_key_example (license_id, first_name, last_name)
VALUES ('T229901', 'Sam', 'Tracy');

The second INSERT fails:

ERROR: duplicate key value violates unique constraint "license_key"
DETAIL: Key (license_id)=(T229901) already exists.

The database enforces uniqueness automatically. It is polite about it, but firm.

1.4.5 Natural Keys: Music Catalog Example

Could we use a natural key for our albums table? The catalog_id from the staging data is a
candidate:

CREATE TABLE albums (
catalog_id varchar(20) CONSTRAINT album_key PRIMARY KEY,
album_title varchar(200) NOT NULL,
release_year smallint,
genre varchar(50)

)

This works if every album has a unique catalog code. But what if the same album is reissued
with a new code? Or acquired from a different distributor with a different code? Natural keys
work until the real world gets creative.

1.4.6 Composite Natural Keys

Sometimes no single column is unique, but a combination is:

CREATE TABLE natural_key_composite_example (
student_id varchar(10),
school_day date,
present boolean,
CONSTRAINT student_key PRIMARY KEY (student_id, school_day)

[

A student can only have one attendance record per day. Neither student_id nor school_day
is unique alone, but together they form a unique identifier.

1.4.7 Composite Keys: Testing Uniqueness

INSERT INTO natural_key_composite_example (student_id, school_day, present)
VALUES (775, '1/22/2017', 'Y');

INSERT INTO natural_key_composite_example (student_id, school_day, present)
VALUES(775, '1/23/2017', 'Y'); -- OK: different day

INSERT INTO natural_key_composite_example (student_id, school_day, present)
VALUES(775, '1/23/2017', 'N'); -- FAILS: same student + day

ERROR: duplicate key value violates unique constraint "student_key"
DETAIL: Key (student_id, school_day)=(775, 2017-01-23) already exists.

1.4.8 Surrogate Keys

A surrogate key is a system-generated value with no real-world meaning:

CREATE TABLE artists (

artist_id bigserial,

artist_name varchar(200) NOT NULL,

CONSTRAINT artist_key PRIMARY KEY (artist_id)
);

PostgreSQL’s serial types auto-generate incrementing integers:

Type Range

smallserial 1 to 32,767
serial 1 to 2,147,483,647
bigserial 1 to 9.2 quintillion

1.4.9 Surrogate Keys: Auto-Increment in Action

INSERT INTO artists (artist_name)
VALUES ('Fleetwood Mac'),
('The Beatles'),
('Beyonce') ;

10

5
¢ SELECT * FROM artists;

artist_id | artist_name
___________ o
1 | Fleetwood Mac
2 | The Beatles
3 | Beyonce

Notice we never specified artist_id. PostgreSQL generated it automatically. One less thing
to argue about in a design meeting.

1.4.10 Natural vs Surrogate: When to Use Which

Factor Natural Key Surrogate Key
Meaning Has real-world meaning Meaningless identifier
Stability Can change (email, name) Never changes

Size Varies (could be long) Fixed, compact
Performance Depends on data type Fast (integer)
Universality Not always available Always available

@ Tip

Practical guidance: Use surrogate keys (serial/bigserial) as primary keys for most
tables. If a natural key exists and is truly stable (ISBN, SSN), consider it. When in
doubt, surrogate wins. Nobody has ever been fired for using a serial primary key.

1.4.11 Two Syntax Styles for PRIMARY KEY

You can declare a primary key inline or as a table constraint:

1.4.11.1 Inline (Column Level)

1 CREATE TABLE artists (

2 artist_id bigserial CONSTRAINT artist_key PRIMARY KEY,
3 artist_name varchar(200) NOT NULL
1);

Best for single-column keys.

11

1.4.11.2 Table Level

CREATE TABLE artists (

artist_id bigserial,

artist_name varchar(200) NOT NULL,

CONSTRAINT artist_key PRIMARY KEY (artist_id)
);

Required for composite keys. Also works for single-column keys.
1.5 Foreign Keys
1.5.1 Connecting Tables with Foreign Keys

A foreign key is a column in one table that references the primary key of another table. It
enforces referential integrity: you cannot reference a row that does not exist.

ARTISTS

bigserial | artist_id PK

varchar artist_name

records

ALBUMS

bigserial | album_id PK

varchar album_title

bigint artist_id FK

12

10

11

12

13

1.5.2 Creating Foreign Key Relationships

CREATE TABLE artists (

artist_id bigserial,

artist_name varchar(200) NOT NULL,

CONSTRAINT artist_key PRIMARY KEY (artist_id)
);

CREATE TABLE albums (
album_id bigserial,
album_title varchar(200) NOT NULL,
release_year smallint,
artist_id bigint REFERENCES artists (artist_id),
CONSTRAINT album_key PRIMARY KEY (album_id)
)3

The REFERENCES keyword creates the foreign key relationship. It is essentially a contract: “I

promise this value exists over there, and I would like the database to hold me to it.”

1.5.3 Foreign Keys: Enforcing Referential Integrity

-— This works: artist_id 1 exists
INSERT INTO artists (artist_name) VALUES ('Fleetwood Mac');

INSERT INTO albums (album_title, release_year, artist_id)
VALUES ('Rumours', 1977, 1);

-— This FAILS: artist_id 999 does not exist
INSERT INTO albums (album_title, release_year, artist_id)
VALUES ('Phantom Album', 2025, 999);

ERROR: insert or update on table "albums" violates foreign key
constraint "albums_artist_id_fkey"
DETAIL: Key (artist_id)=(999) is not present in table "artists".

1.5.4 What Happens When You Delete a Parent Row?

By default, PostgreSQL prevents deleting a row from the parent table if child rows reference it.

This protects data integrity but can be inconvenient.

ON DELETE CASCADE tells PostgreSQL to automatically delete child rows when the

parent is deleted:

13

CREATE TABLE tracks (
track_id bigserial,

track_title varchar(200) NOT NULL,

album_id bigint REFERENCES albums (album_id)

ON DELETE CASCADE,

CONSTRAINT track_key PRIMARY KEY (track_id)

)

Delete an album, and all its tracks vanish with it. This is appropriate when child rows have no

meaning without the parent.

1.5.5 ON DELETE Options

Option Behavior

RESTRICT (default) Prevent deletion if children exist
CASCADE Delete children automatically

SET NULL Set foreign key to NULL in children

SET DEFAULT

Set foreign key to default value in children

Warning

Use CASCADE carefully. Deleting one artist could cascade through albums and tracks,
removing far more data than intended. CASCADE is the database equivalent of pulling a

loose thread on a sweater.

1.5.6 Foreign Key Design Patterns

One-to-Many

Many-to-Many

One-to-One

Put FK in the
'many’ table

Create a
junction table

Put FK in either
table, add UNIQUE

One-to-Many: An artist has many albums. Put artist_id in the albums table.

14

10

11

12

13

10

11

Many-to-Many: Artists perform in many genres; genres have many artists.

artist_genres with FKs to both.

One-to-One: An artist has one biography. Put artist_id in biographies with a UNIQUE

constraint.

1.6 CHECK Constraints

1.6.1 Validating Data with CHECK

A CHECK constraint ensures that column values meet a logical condition. If the condition

evaluates to false, the row is rejected.

CREATE TABLE albums (
album_id bigserial,
album_title varchar(200) NOT NULL,
release_year smallint,
genre varchar(50),
duration_min numeric(5,1),
artist_id bigint REFERENCES artists (artist_id),
CONSTRAINT album_key PRIMARY KEY (album_id),
CONSTRAINT check_year_range
CHECK (release_year BETWEEN 1900 AND 2100),
CONSTRAINT check_duration_positive
CHECK (duration_min > 0)
);

1.6.2 CHECK: Practical Examples

CHECK constraints can enforce a wide variety of business rules:

-— Genre must be from a known list
CONSTRAINT check_genre
CHECK (genre IN ('Rock', 'Pop', 'Hip-Hop', 'R&B',
'Country', 'Electronic', 'Alternative', 'Jazz'))

-- Release year must be reasonable
CONSTRAINT check_year_range
CHECK (release_year BETWEEN 1900 AND 2100)

—-— Track number must be positive
CONSTRAINT check_track_positive

15

13

14

Jun
n

5

CHECK (track_number > 0)
—— Duration must be within reason

CONSTRAINT check_duration
CHECK (duration_sec BETWEEN 1 AND 7200)

1.6.3 When to Use CHECK Constraints

Scenario Example

Enumerated values genre IN ('Rock', 'Pop', 'Jazz')
Numeric ranges release_year BETWEEN 1900 AND 2100
Comparison between columns end_date > start_date

Non-negative values duration_min > O

String patterns email LIKE '%@%.%"'

@ Tip

CHECK constraints catch bad data at the database level, regardless of which application
inserts it. This is your last line of defense. Applications come and go, but the database
remembers.

1.7 UNIQUE Constraints
1.7.1 Enforcing Uniqueness Beyond the Primary Key

A UNIQUE constraint ensures no duplicate values exist in a column (or combination of columns),
separate from the primary key.

CREATE TABLE artists (
artist_id bigserial CONSTRAINT artist_key PRIMARY KEY,
artist_name varchar(200) NOT NULL,
CONSTRAINT artist_name_unique UNIQUE (artist_name)

)

This prevents inserting two artists with the same name. Whether that is desirable depends on
whether you believe there is only one “John Williams” in the music industry. (There are at
least two famous ones.)

16

1.7.2 UNIQUE: Testing the Constraint

INSERT INTO artists (artist_name) VALUES ('Beyonce');
INSERT INTO artists (artist_name) VALUES ('Beyonce');

ERROR: duplicate key value violates unique constraint "artist_name_unique"
DETAIL: Key (artist_name)=(Beyonce) already exists.

1.7.3 Composite UNIQUE Constraints

Sometimes uniqueness requires multiple columns. An album title is not unique by itself (many
artists have a self-titled album), but the combination of artist and title should be:

CREATE TABLE albums (
album_id bigserial CONSTRAINT album_key PRIMARY KEY,
album_title varchar(200) NOT NULL,
release_year smallint,
artist_id bigint REFERENCES artists (artist_id),
CONSTRAINT album_artist_unique UNIQUE (album_title, artist_id)
);

Now two different artists can both have “Greatest Hits,” but the same artist cannot have two
albums with the same title.

1.7.4 UNIQUE vs PRIMARY KEY

Feature PRIMARY KEY UNIQUE

Uniqueness Yes Yes

Allows NULL No Yes (one NULL per column)
Per table Only one Multiple allowed

Creates index Yes Yes

A table has one primary key but can have many UNIQUE constraints. Use UNIQUE for
candidate keys that are not the primary key.

17

1.8 NOT NULL Constraints
1.8.1 Requiring Values with NOT NULL

NOT NULL prevents a column from containing NULL values. This is essential for columns that
must always have data:

CREATE TABLE artists (

artist_id bigserial,

artist_name varchar(200) NOT NULL,

CONSTRAINT artist_key PRIMARY KEY (artist_id)
);

Any INSERT that omits artist_name (or sets it to NULL) will fail. An artist without a name
is not an artist. It is a mystery.

1.8.2 When to Use NOT NULL

Apply NOT NULL to columns where missing data would be meaningless or harmful:

Always NOT NULL Often Nullable

artist_name label (indie releases)
album_title genre (might be ambiguous)
track_title duration_min (might be unknown)
Foreign keys (usually) release_year (might be disputed)
track_number Notes, descriptions

@ Tip

Default to NOT NULL and only allow NULLs when there is a legitimate reason for
missing data. This catches bugs early. Future you will appreciate the strictness, even if
present you finds it annoying.

1.9 Modifying Tables with ALTER TABLE
1.9.1 Adding and Removing Constraints

You do not always get the design right on the first try. Nobody does. If you did, you would be
suspicious. ALTER TABLE lets you modify constraints after creation:

18

—-— Remove a constraint
ALTER TABLE artists
DROP CONSTRAINT artist_name_unique;

—-— Add a constraint back
ALTER TABLE artists
ADD CONSTRAINT artist_name_unique UNIQUE (artist_name);

1.9.2 ALTER TABLE: NOT NULL

NOT NULL constraints use a different syntax because they are column properties, not named
constraints:

-- Remove NOT NULL
ALTER TABLE albums
ALTER COLUMN genre DROP NOT NULL;

-- Add NOT NULL back

ALTER TABLE albums
ALTER COLUMN genre SET NOT NULL;

1.9.3 Common ALTER TABLE Operations

Operation Syntax

Drop constraint ALTER TABLE t DROP CONSTRAINT c;

Add constraint ALTER TABLE t ADD CONSTRAINT c ...;

Drop NOT NULL ALTER TABLE t ALTER COLUMN col DROP NOT NULL;
Set NOT NULL ALTER TABLE t ALTER COLUMN col SET NOT NULL;
Add column ALTER TABLE t ADD COLUMN col type;

Drop column ALTER TABLE t DROP COLUMN col;

Rename column ALTER TABLE t RENAME COLUMN old TO new;
Rename table ALTER TABLE t RENAME TO new_name;

1.9.4 ALTER TABLE in Practice

A common workflow when evolving a database:

19

Discover
issue

Plan
change

ALTER TABLE

to fix

—-- Scenario: You realize albums need a label column you forgot
ALTER TABLE albums
ADD COLUMN label varchar(100);

-- And genre should be required after all
ALTER TABLE albums

ALTER COLUMN genre SET NOT NULL;

1.10 Speeding Things Up: Indexes

1.10.1 What Is an Index?

Test with
sample data

An index is a data structure that speeds up data retrieval at the cost of additional storage
and slower writes.

Think of it like the index at the back of a textbook: instead of reading every page to find
“normalization,” you look it up in the index and jump directly to the right page. Databases
without indexes are just very patient.

Query:

‘Beyonce’

WHERE artist_name =

1.10.2 Without an Index: Sequential Scan

No—»

Sequential Scan
Check every row

Index
exists?

Yes—»

Index Scan
Jump to matches

PostgreSQL reads every single row in the table:

20

1

2

EXPLAIN ANALYZE SELECT * FROM music_catalog
WHERE artist_name = 'Beyonce';

Seq Scan on music_catalog
(cost=0.00..20730.68 rows=12 width=46)
(actual time=0.055..289.426 rows=8 loops=1)
Filter: ((artist_name)::text = 'Beyonce'::text)
Rows Removed by Filter: 601

Planning time: 0.617 ms

Execution time: 289.838 ms

On a large catalog, scanning every row adds up. Now imagine a thousand users searching
simultaneously.

1.10.3 Creating an Index

CREATE INDEX idx_albums_artist ON albums (artist_id);
CREATE INDEX idx_tracks_album ON tracks (album_id);
CREATE INDEX idx_albums_genre ON albums (genre);

These build B-tree indexes (the default) on frequently queried columns.

1.10.4 When to Create Indexes

Create Index When Skip Index When

Column used in WHERE clauses Table is small (< 1000 rows)

Column used in JOIN conditions Column has few distinct values

Column used in ORDER BY Table has heavy INSERT/UPDATE load
Foreign key columns You rarely query the column

@ Tip

PostgreSQL automatically creates indexes on PRIMARY KEY and UNIQUE columns.
You only need to manually create indexes on other frequently queried columns.

21

1.10.5 EXPLAIN ANALYZE: Your Performance Detective

EXPLAIN ANALYZE shows you exactly how PostgreSQL executes a query:

EXPLAIN ANALYZE SELECT * FROM albums
WHERE genre = 'Rock';

Key things to look for:

e Seq Scan: Reading every row (potentially slow)

e Index Scan / Bitmap Index Scan: Using an index (fast)

o Execution time: Total query time in milliseconds

« Rows Removed by Filter: How many rows were checked but not returned

1.10.6 Managing Indexes

-- Create an index
CREATE INDEX idx_name ON table name (column name);

-— Create a multi-column index
CREATE INDEX idx_name ON table_name (coll, col2);

—-- Remove an index
DROP INDEX idx_name;

Indexes are not free:

e They consume disk space
e They slow down INSERT, UPDATE, and DELETE operations
e Too many indexes can hurt overall performance

Balance is key. Index the columns you query most. Indexing everything is like highlighting
every word in a textbook. At that point, nothing is highlighted.

1.11 Building the Music Catalog Schema
1.11.1 Putting It All Together

Now we apply everything we have learned to build the normalized music catalog tables. The
staging table holds the raw import. These tables hold the clean, structured data.

22

1: Choose naming
conventions

2: Define tables from
normalized schema

3: Assign primary keys
(natural or surrogate)

4: Add foreign keys
for relationships

5: Add constraints
CHECK, UNIQUE, NOT NULL

6: Create indexes
on queried columns

23

10

11

12

13

14

15

16

1.11.2 The Artists Table

CREATE TABLE artists (
artist_id bigserial,
artist_name varchar(200) NOT NULL,
CONSTRAINT artist_key PRIMARY KEY (artist_id),
CONSTRAINT artist_name_unique UNIQUE (artist_name)
);

Key decisions:

o Surrogate key (bigserial) because artist names can change or have variations
o artist_name is NOT NULL and UNIQUE (every artist needs a name, and we do not
want duplicates after cleaning)

1.11.3 The Albums Table

CREATE TABLE albums (
album_id bigserial,
album_title varchar(200) NOT NULL,
release_year smallint,
genre varchar(50),
label varchar(100),
duration_min numeric(5,1),
artist_id bigint NOT NULL REFERENCES artists (artist_id),
CONSTRAINT album_key PRIMARY KEY (album_id),
CONSTRAINT check_year_range
CHECK (release_year BETWEEN 1900 AND 2100),
CONSTRAINT check_duration_positive
CHECK (duration_min > 0),
CONSTRAINT album_artist_unique
UNIQUE (album_title, artist_id)
);

Key decisions:

o artist_id is NOT NULL (every album must have an artist)

e CHECK on year range catches obvious errors

o Composite UNIQUE on title + artist prevents duplicate albums per artist

o genre is nullable (some albums defy classification, and our staging data has NULLs)

24

10

11

12

13

14

10

11

1.11.4 The Tracks Table

CREATE TABLE tracks (
track_id bigserial,
track_title varchar(200) NOT NULL,
track_number smallint NOT NULL,
duration_sec numeric(6,1),
album_id bigint NOT NULL REFERENCES albums (album_id),
CONSTRAINT track_key PRIMARY KEY (track_id),
CONSTRAINT check_track_number
CHECK (track_number > 0),
CONSTRAINT check_track_duration
CHECK (duration_sec > 0),
CONSTRAINT track_album_unique
UNIQUE (track_number, album_id)
);

Key decisions:

e album_id is NOT NULL (every track belongs to an album)

e Composite UNIQUE on track_number + album prevents duplicate track numbers within
an album

o duration_sec is nullable (metadata is not always complete)

1.11.5 Indexes for Common Queries

-- Speed up lookups by artist (for album listings)
CREATE INDEX idx_albums_artist ON albums (artist_id);

-- Speed up lookups by album (for track listings)
CREATE INDEX idx_tracks_album ON tracks (album_id);

—-- Speed up genre-based browsing
CREATE INDEX idx_albums_genre ON albums (genre);

—-- Speed up searches by release year
CREATE INDEX idx_albums_year ON albums (release_year);

Foreign key columns and frequently filtered columns are good index candidates.

25

26

1.11.6 The Complete Schema

ARTISTS
bigserial | artist_id PK
varchar artist_name | UK
records
ALBUMS
bigserial | album_id PK
varchar album_title
smallint | release_year
varchar genre
varchar label
numeric | duration_min
bigint artist_id FK
contains
TRACKS
bigserial | track_id PK
varchar track_title
smallint | track_number
numeric | duration_sec
bigint album id FK

27

Three tables, proper constraints, indexes on the right columns. The staging table holds 609
rows of messy data. These tables are ready to hold the clean version.

1.11.7 Constraints Summary

Constraint

Purpose

Syntax

PRIMARY KEY
FOREIGN KEY
CHECK
UNIQUE

NOT NULL

Unique row identifier
Referential integrity
Value validation

No duplicates

Requires a value

CONSTRAINT name
PRIMARY KEY (col)

col type REFERENCES
table (col)
CONSTRAINT name CHECK
(expr)

CONSTRAINT name
UNIQUE (col)

col type NOT NULL

1.11.8 What Is Next

Now that you can build tables with proper constraints, the next step is inspecting and

migrating data from the staging table into the new structure.

Next time we will:

o Fix inconsistencies with UPDATE
o Migrate data into our normalized tables using INSERT INTO .. SELECT
e Wrap it all in transactions for safety

Staging Table
(raw CSV import)

1.12 References

1.12.1 Sources

Normalized Tables

(with constraints)

Audit the staging data for quality issues (spoiler: there are many)

Clean, Structured
Database

1. DeBarros, A. (2022). Practical SQL: A Beginner’s Guide to Storytelling with Data (2nd
ed.). No Starch Press. Chapter 7: Table Design That Works for You.

28

2. PostgreSQL Documentation. “CREATE TABLE.” https://www.postgresql.org/docs/curr
ent /sql-createtable.html

3. PostgreSQL Documentation. “Indexes.” https://www.postgresql.org/docs/current/inde
xes.html

4. PostgreSQL Documentation. “Constraints.” https://www.postgresql.org/docs/current/
ddl-constraints.html

29

https://www.postgresql.org/docs/current/sql-createtable.html
https://www.postgresql.org/docs/current/sql-createtable.html
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/ddl-constraints.html
https://www.postgresql.org/docs/current/ddl-constraints.html

	From Design to Implementation

