
Lecture 05-1: Table Design and Constraints
DATA 503: Fundamentals of Data Engineering

Lucas P. Cordova, Ph.D.

2026-02-09

This lecture covers the practical implementation of database table design in
PostgreSQL. After learning to normalize data and design relational schemas, we
now focus on building those tables with proper constraints. Topics include naming
conventions, primary keys (natural vs surrogate), foreign keys and referential
integrity, CHECK constraints, UNIQUE constraints, NOT NULL constraints,
modifying tables with ALTER TABLE, and speeding up queries with indexes. A
music catalog dataset serves as the running example throughout.

Table of contents

1 From Design to Implementation 1

1 From Design to Implementation

You have learned to import raw data into a single table and design a normalized schema. Now
we build the tables that bring that design to life. Think of it as the difference between an
architect’s blueprint and actually pouring the concrete.

1



1.1 The Data Engineering Pipeline

1.1.1 What Comes Next

Today we learn the DDL (Data Definition Language) skills to implement your normalized
designs:

After today, the next step is migrating data from your staging table into the new structure
using INSERT, UPDATE, and DELETE.

1.2 Our Running Example: A Music Catalog

1.2.1 The Scenario

You work for a streaming service that just acquired a catalog of albums from a defunct record
distributor. The data arrived as a single CSV file spanning six decades of music, from Fleetwood
Mac to Beyonce. Your job is to normalize it and build proper tables.

Here is a sample of what you received:

cata-
log_id artist_name

album_ti-
tle

re-
lease_year genre label

dura-
tion_min decade

CAT-
1001

Fleetwood
Mac

Rumours 1977 Rock Warner
Bros

39.4 1970s

CAT-
1002

Fleetwood
Mac

Tango in
the Night

1987 Rock Warner
Bros

45.1 1980s

CAT-
1003

The
Beatles

Abbey
Road

1969 Rock Apple 47.4 1960s

CAT-
1004

The
Beatles

Abbey
Road

1969 Rock Apple 47.4 1960s

CAT-
1005

Led
Zepplin

Led
Zeppelin IV

1971 Rock At-
lantic

42.5 1970

CAT-
1006

Beyonce Lemonade 2016 R&B Columbia45.7 2010s

CAT-
1007

Beyonce Renais-
sance

2022 Pop Columbia42.1 20s

2



cata-
log_id artist_name

album_ti-
tle

re-
lease_year genre label

dura-
tion_min decade

CAT-
1008

Radiohead OK
Computer

1997 Alter-
native

Par-
lophone

53.4 1990s

CAT-
1009

the rolling
stones

Sticky
Fingers

1971 Rock Rolling
Stones

46.3 1970s

CAT-
1010

Whitney
houston

The
Bodyguard

1992 Pop Arista 56.8 1990s

CAT-
1011

OutKast Stankonia 2000 Hip-
Hop

LaFace 72.9 2000s

CAT-
1012

Outkast Aquemini 1998 Hip-
Hop

LaFace 72.6 1990s

If you are already counting problems in that table, good. We will deal with them next time.
Today we focus on building the target schema.

1.2.2 The Staging Table

First, we import the CSV into a flat staging table:

1 CREATE TABLE music_catalog (
2 catalog_id varchar(20) CONSTRAINT catalog_key PRIMARY KEY,
3 artist_name varchar(200),
4 album_title varchar(200),
5 release_year smallint,
6 genre varchar(50),
7 label varchar(100),
8 duration_min numeric(5,1),
9 decade varchar(10)

10 );
11

12 COPY music_catalog
13 FROM '/path/to/album_catalog.csv'
14 WITH (FORMAT CSV, HEADER, DELIMITER ',');

This staging table holds raw, denormalized data. It is a holding pen, not a home.

1.2.3 Identifying Entities

Looking at the data, we can identify distinct entities:

3



4



The staging table mixes artist data with album data in every row. Normalization separates
them into distinct tables with relationships.

1.2.4 The Normalized Target

Our goal is three tables:

• artists – one row per unique artist
• albums – one row per unique album, linked to an artist
• tracks – one row per track, linked to an album

The staging table gets us to artists and albums. Track data would come from a separate
source, but we will build the table structure anyway. In the real world, schemas are built for
the data you expect, not just the data you have.

Now let us learn the DDL skills to build these tables properly.

1.3 Naming Conventions

1.3.1 Why Naming Matters

Good naming conventions make your database self-documenting. A well-named schema tells
you what it contains without reading a single comment.

Bad naming leads to:

• Confusion when writing queries
• Bugs from misremembering column names
• Onboarding headaches for new team members
• Passive-aggressive comments in code reviews

1.3.2 PostgreSQL Naming Rules

PostgreSQL has specific rules for identifiers (table and column names):

• Can contain letters, digits, and underscores
• Must begin with a letter or underscore
• Are case-insensitive by default (folded to lowercase)
• Maximum length of 63 characters

5



1 -- These all refer to the SAME table:
2 CREATE TABLE artists (...);
3 CREATE TABLE Artists (...); -- Error: already exists!
4 CREATE TABLE ARTISTS (...); -- Error: already exists!

PostgreSQL treats your shouting the same as your whispering.

1.3.3 The Case Sensitivity Trap

PostgreSQL folds unquoted identifiers to lowercase. If you use double quotes, the name becomes
case-sensitive:

1 CREATE TABLE "Artists" (...); -- Creates "Artists" (capital A)
2 SELECT * FROM artists; -- Looks for "artists" (lowercase)
3 SELECT * FROM "Artists"; -- Finds "Artists" (capital A)

Exclamation-Triangle Warning

Avoid double-quoted identifiers. They create maintenance headaches because every query
must use the exact casing with quotes. You will curse your past self at 2 AM.

1.3.4 Best Practices for Naming

Convention Example Avoid

Use snake_case release_year releaseYear, ReleaseYear
Be descriptive artist_name art_nm
Use plurals for tables artists, albums artist, album
Include context duration_min data_column_7
Prefix dates report_2026_01_15 15_01_2026_report

1.3.5 Naming: Tables vs Columns

1.3.5.1 Tables

Tables represent collections of entities. Use plural nouns:

• artists (not artist)
• albums (not album)
• tracks (not track)

6



1.3.5.2 Columns

Columns represent attributes. Use singular, descriptive names:

• artist_name (not artist_names)
• release_year (not years_released)
• duration_min (not dur)

1.3.5.3 Junction Tables

For many-to-many relationships, combine both table names:

• artist_genres
• album_tracks
• playlist_songs

1.4 Primary Keys

1.4.1 Recap: What Is a Primary Key?

A primary key uniquely identifies each row in a table. It provides:

• Uniqueness: No two rows share the same key value
• Non-nullability: The key value cannot be NULL
• Identity: A reliable way to reference a specific row

Every table in a well-designed database should have a primary key.

7



1.4.2 Two Approaches to Primary Keys

1.4.3 Natural Keys

A natural key uses data that already exists and naturally identifies the entity.

1 CREATE TABLE natural_key_example (
2 license_id varchar(10) CONSTRAINT license_key PRIMARY KEY,
3 first_name varchar(50),
4 last_name varchar(50)
5 );

Here license_id is a real-world identifier. Each person has exactly one, and it is unique. In
theory. In practice, natural keys have a habit of being less unique than you were promised.

8



1.4.4 Natural Keys: Testing Uniqueness

Let us see what happens when we violate the primary key:

1 INSERT INTO natural_key_example (license_id, first_name, last_name)
2 VALUES ('T229901', 'Lynn', 'Malero');
3

4 INSERT INTO natural_key_example (license_id, first_name, last_name)
5 VALUES ('T229901', 'Sam', 'Tracy');

The second INSERT fails:

ERROR: duplicate key value violates unique constraint "license_key"
DETAIL: Key (license_id)=(T229901) already exists.

The database enforces uniqueness automatically. It is polite about it, but firm.

1.4.5 Natural Keys: Music Catalog Example

Could we use a natural key for our albums table? The catalog_id from the staging data is a
candidate:

1 CREATE TABLE albums (
2 catalog_id varchar(20) CONSTRAINT album_key PRIMARY KEY,
3 album_title varchar(200) NOT NULL,
4 release_year smallint,
5 genre varchar(50)
6 );

This works if every album has a unique catalog code. But what if the same album is reissued
with a new code? Or acquired from a different distributor with a different code? Natural keys
work until the real world gets creative.

1.4.6 Composite Natural Keys

Sometimes no single column is unique, but a combination is:

1 CREATE TABLE natural_key_composite_example (
2 student_id varchar(10),
3 school_day date,
4 present boolean,
5 CONSTRAINT student_key PRIMARY KEY (student_id, school_day)
6 );

9



A student can only have one attendance record per day. Neither student_id nor school_day
is unique alone, but together they form a unique identifier.

1.4.7 Composite Keys: Testing Uniqueness

1 INSERT INTO natural_key_composite_example (student_id, school_day, present)
2 VALUES(775, '1/22/2017', 'Y');
3

4 INSERT INTO natural_key_composite_example (student_id, school_day, present)
5 VALUES(775, '1/23/2017', 'Y'); -- OK: different day
6

7 INSERT INTO natural_key_composite_example (student_id, school_day, present)
8 VALUES(775, '1/23/2017', 'N'); -- FAILS: same student + day

ERROR: duplicate key value violates unique constraint "student_key"
DETAIL: Key (student_id, school_day)=(775, 2017-01-23) already exists.

1.4.8 Surrogate Keys

A surrogate key is a system-generated value with no real-world meaning:

1 CREATE TABLE artists (
2 artist_id bigserial,
3 artist_name varchar(200) NOT NULL,
4 CONSTRAINT artist_key PRIMARY KEY (artist_id)
5 );

PostgreSQL’s serial types auto-generate incrementing integers:

Type Range

smallserial 1 to 32,767
serial 1 to 2,147,483,647
bigserial 1 to 9.2 quintillion

1.4.9 Surrogate Keys: Auto-Increment in Action

1 INSERT INTO artists (artist_name)
2 VALUES ('Fleetwood Mac'),
3 ('The Beatles'),
4 ('Beyonce');

10



5

6 SELECT * FROM artists;

artist_id | artist_name
-----------+---------------

1 | Fleetwood Mac
2 | The Beatles
3 | Beyonce

Notice we never specified artist_id. PostgreSQL generated it automatically. One less thing
to argue about in a design meeting.

1.4.10 Natural vs Surrogate: When to Use Which

Factor Natural Key Surrogate Key

Meaning Has real-world meaning Meaningless identifier
Stability Can change (email, name) Never changes
Size Varies (could be long) Fixed, compact
Performance Depends on data type Fast (integer)
Universality Not always available Always available

LIGHTBULB Tip

Practical guidance: Use surrogate keys (serial/bigserial) as primary keys for most
tables. If a natural key exists and is truly stable (ISBN, SSN), consider it. When in
doubt, surrogate wins. Nobody has ever been fired for using a serial primary key.

1.4.11 Two Syntax Styles for PRIMARY KEY

You can declare a primary key inline or as a table constraint:

1.4.11.1 Inline (Column Level)

1 CREATE TABLE artists (
2 artist_id bigserial CONSTRAINT artist_key PRIMARY KEY,
3 artist_name varchar(200) NOT NULL
4 );

Best for single-column keys.

11



1.4.11.2 Table Level

1 CREATE TABLE artists (
2 artist_id bigserial,
3 artist_name varchar(200) NOT NULL,
4 CONSTRAINT artist_key PRIMARY KEY (artist_id)
5 );

Required for composite keys. Also works for single-column keys.

1.5 Foreign Keys

1.5.1 Connecting Tables with Foreign Keys

A foreign key is a column in one table that references the primary key of another table. It
enforces referential integrity: you cannot reference a row that does not exist.

12



1.5.2 Creating Foreign Key Relationships

1 CREATE TABLE artists (
2 artist_id bigserial,
3 artist_name varchar(200) NOT NULL,
4 CONSTRAINT artist_key PRIMARY KEY (artist_id)
5 );
6

7 CREATE TABLE albums (
8 album_id bigserial,
9 album_title varchar(200) NOT NULL,

10 release_year smallint,
11 artist_id bigint REFERENCES artists (artist_id),
12 CONSTRAINT album_key PRIMARY KEY (album_id)
13 );

The REFERENCES keyword creates the foreign key relationship. It is essentially a contract: “I
promise this value exists over there, and I would like the database to hold me to it.”

1.5.3 Foreign Keys: Enforcing Referential Integrity

1 -- This works: artist_id 1 exists
2 INSERT INTO artists (artist_name) VALUES ('Fleetwood Mac');
3

4 INSERT INTO albums (album_title, release_year, artist_id)
5 VALUES ('Rumours', 1977, 1);

1 -- This FAILS: artist_id 999 does not exist
2 INSERT INTO albums (album_title, release_year, artist_id)
3 VALUES ('Phantom Album', 2025, 999);

ERROR: insert or update on table "albums" violates foreign key
constraint "albums_artist_id_fkey"
DETAIL: Key (artist_id)=(999) is not present in table "artists".

1.5.4 What Happens When You Delete a Parent Row?

By default, PostgreSQL prevents deleting a row from the parent table if child rows reference it.
This protects data integrity but can be inconvenient.

ON DELETE CASCADE tells PostgreSQL to automatically delete child rows when the
parent is deleted:

13



1 CREATE TABLE tracks (
2 track_id bigserial,
3 track_title varchar(200) NOT NULL,
4 album_id bigint REFERENCES albums (album_id)
5 ON DELETE CASCADE,
6 CONSTRAINT track_key PRIMARY KEY (track_id)
7 );

Delete an album, and all its tracks vanish with it. This is appropriate when child rows have no
meaning without the parent.

1.5.5 ON DELETE Options

Option Behavior

RESTRICT (default) Prevent deletion if children exist
CASCADE Delete children automatically
SET NULL Set foreign key to NULL in children
SET DEFAULT Set foreign key to default value in children

Exclamation-Triangle Warning

Use CASCADE carefully. Deleting one artist could cascade through albums and tracks,
removing far more data than intended. CASCADE is the database equivalent of pulling a
loose thread on a sweater.

1.5.6 Foreign Key Design Patterns

One-to-Many: An artist has many albums. Put artist_id in the albums table.

14



Many-to-Many: Artists perform in many genres; genres have many artists. Create
artist_genres with FKs to both.

One-to-One: An artist has one biography. Put artist_id in biographies with a UNIQUE
constraint.

1.6 CHECK Constraints

1.6.1 Validating Data with CHECK

A CHECK constraint ensures that column values meet a logical condition. If the condition
evaluates to false, the row is rejected.

1 CREATE TABLE albums (
2 album_id bigserial,
3 album_title varchar(200) NOT NULL,
4 release_year smallint,
5 genre varchar(50),
6 duration_min numeric(5,1),
7 artist_id bigint REFERENCES artists (artist_id),
8 CONSTRAINT album_key PRIMARY KEY (album_id),
9 CONSTRAINT check_year_range

10 CHECK (release_year BETWEEN 1900 AND 2100),
11 CONSTRAINT check_duration_positive
12 CHECK (duration_min > 0)
13 );

1.6.2 CHECK: Practical Examples

CHECK constraints can enforce a wide variety of business rules:

1 -- Genre must be from a known list
2 CONSTRAINT check_genre
3 CHECK (genre IN ('Rock', 'Pop', 'Hip-Hop', 'R&B',
4 'Country', 'Electronic', 'Alternative', 'Jazz'))
5

6 -- Release year must be reasonable
7 CONSTRAINT check_year_range
8 CHECK (release_year BETWEEN 1900 AND 2100)
9

10 -- Track number must be positive
11 CONSTRAINT check_track_positive

15



12 CHECK (track_number > 0)
13

14 -- Duration must be within reason
15 CONSTRAINT check_duration
16 CHECK (duration_sec BETWEEN 1 AND 7200)

1.6.3 When to Use CHECK Constraints

Scenario Example

Enumerated values genre IN ('Rock', 'Pop', 'Jazz')
Numeric ranges release_year BETWEEN 1900 AND 2100
Comparison between columns end_date > start_date
Non-negative values duration_min > 0
String patterns email LIKE '%@%.%'

LIGHTBULB Tip

CHECK constraints catch bad data at the database level, regardless of which application
inserts it. This is your last line of defense. Applications come and go, but the database
remembers.

1.7 UNIQUE Constraints

1.7.1 Enforcing Uniqueness Beyond the Primary Key

A UNIQUE constraint ensures no duplicate values exist in a column (or combination of columns),
separate from the primary key.

1 CREATE TABLE artists (
2 artist_id bigserial CONSTRAINT artist_key PRIMARY KEY,
3 artist_name varchar(200) NOT NULL,
4 CONSTRAINT artist_name_unique UNIQUE (artist_name)
5 );

This prevents inserting two artists with the same name. Whether that is desirable depends on
whether you believe there is only one “John Williams” in the music industry. (There are at
least two famous ones.)

16



1.7.2 UNIQUE: Testing the Constraint

1 INSERT INTO artists (artist_name) VALUES ('Beyonce');
2 INSERT INTO artists (artist_name) VALUES ('Beyonce');

ERROR: duplicate key value violates unique constraint "artist_name_unique"
DETAIL: Key (artist_name)=(Beyonce) already exists.

1.7.3 Composite UNIQUE Constraints

Sometimes uniqueness requires multiple columns. An album title is not unique by itself (many
artists have a self-titled album), but the combination of artist and title should be:

1 CREATE TABLE albums (
2 album_id bigserial CONSTRAINT album_key PRIMARY KEY,
3 album_title varchar(200) NOT NULL,
4 release_year smallint,
5 artist_id bigint REFERENCES artists (artist_id),
6 CONSTRAINT album_artist_unique UNIQUE (album_title, artist_id)
7 );

Now two different artists can both have “Greatest Hits,” but the same artist cannot have two
albums with the same title.

1.7.4 UNIQUE vs PRIMARY KEY

Feature PRIMARY KEY UNIQUE

Uniqueness Yes Yes
Allows NULL No Yes (one NULL per column)
Per table Only one Multiple allowed
Creates index Yes Yes

A table has one primary key but can have many UNIQUE constraints. Use UNIQUE for
candidate keys that are not the primary key.

17



1.8 NOT NULL Constraints

1.8.1 Requiring Values with NOT NULL

NOT NULL prevents a column from containing NULL values. This is essential for columns that
must always have data:

1 CREATE TABLE artists (
2 artist_id bigserial,
3 artist_name varchar(200) NOT NULL,
4 CONSTRAINT artist_key PRIMARY KEY (artist_id)
5 );

Any INSERT that omits artist_name (or sets it to NULL) will fail. An artist without a name
is not an artist. It is a mystery.

1.8.2 When to Use NOT NULL

Apply NOT NULL to columns where missing data would be meaningless or harmful:

Always NOT NULL Often Nullable

artist_name label (indie releases)
album_title genre (might be ambiguous)
track_title duration_min (might be unknown)
Foreign keys (usually) release_year (might be disputed)
track_number Notes, descriptions

LIGHTBULB Tip

Default to NOT NULL and only allow NULLs when there is a legitimate reason for
missing data. This catches bugs early. Future you will appreciate the strictness, even if
present you finds it annoying.

1.9 Modifying Tables with ALTER TABLE

1.9.1 Adding and Removing Constraints

You do not always get the design right on the first try. Nobody does. If you did, you would be
suspicious. ALTER TABLE lets you modify constraints after creation:

18



1 -- Remove a constraint
2 ALTER TABLE artists
3 DROP CONSTRAINT artist_name_unique;
4

5 -- Add a constraint back
6 ALTER TABLE artists
7 ADD CONSTRAINT artist_name_unique UNIQUE (artist_name);

1.9.2 ALTER TABLE: NOT NULL

NOT NULL constraints use a different syntax because they are column properties, not named
constraints:

1 -- Remove NOT NULL
2 ALTER TABLE albums
3 ALTER COLUMN genre DROP NOT NULL;
4

5 -- Add NOT NULL back
6 ALTER TABLE albums
7 ALTER COLUMN genre SET NOT NULL;

1.9.3 Common ALTER TABLE Operations

Operation Syntax

Drop constraint ALTER TABLE t DROP CONSTRAINT c;
Add constraint ALTER TABLE t ADD CONSTRAINT c ...;
Drop NOT NULL ALTER TABLE t ALTER COLUMN col DROP NOT NULL;
Set NOT NULL ALTER TABLE t ALTER COLUMN col SET NOT NULL;
Add column ALTER TABLE t ADD COLUMN col type;
Drop column ALTER TABLE t DROP COLUMN col;
Rename column ALTER TABLE t RENAME COLUMN old TO new;
Rename table ALTER TABLE t RENAME TO new_name;

1.9.4 ALTER TABLE in Practice

A common workflow when evolving a database:

19



1 -- Scenario: You realize albums need a label column you forgot
2 ALTER TABLE albums
3 ADD COLUMN label varchar(100);
4

5 -- And genre should be required after all
6 ALTER TABLE albums
7 ALTER COLUMN genre SET NOT NULL;

1.10 Speeding Things Up: Indexes

1.10.1 What Is an Index?

An index is a data structure that speeds up data retrieval at the cost of additional storage
and slower writes.

Think of it like the index at the back of a textbook: instead of reading every page to find
“normalization,” you look it up in the index and jump directly to the right page. Databases
without indexes are just very patient.

1.10.2 Without an Index: Sequential Scan

PostgreSQL reads every single row in the table:

20



1 EXPLAIN ANALYZE SELECT * FROM music_catalog
2 WHERE artist_name = 'Beyonce';

Seq Scan on music_catalog
(cost=0.00..20730.68 rows=12 width=46)
(actual time=0.055..289.426 rows=8 loops=1)
Filter: ((artist_name)::text = 'Beyonce'::text)
Rows Removed by Filter: 601

Planning time: 0.617 ms
Execution time: 289.838 ms

On a large catalog, scanning every row adds up. Now imagine a thousand users searching
simultaneously.

1.10.3 Creating an Index

1 CREATE INDEX idx_albums_artist ON albums (artist_id);
2 CREATE INDEX idx_tracks_album ON tracks (album_id);
3 CREATE INDEX idx_albums_genre ON albums (genre);

These build B-tree indexes (the default) on frequently queried columns.

1.10.4 When to Create Indexes

Create Index When Skip Index When

Column used in WHERE clauses Table is small (< 1000 rows)
Column used in JOIN conditions Column has few distinct values
Column used in ORDER BY Table has heavy INSERT/UPDATE load
Foreign key columns You rarely query the column

LIGHTBULB Tip

PostgreSQL automatically creates indexes on PRIMARY KEY and UNIQUE columns.
You only need to manually create indexes on other frequently queried columns.

21



1.10.5 EXPLAIN ANALYZE: Your Performance Detective

EXPLAIN ANALYZE shows you exactly how PostgreSQL executes a query:

1 EXPLAIN ANALYZE SELECT * FROM albums
2 WHERE genre = 'Rock';

Key things to look for:

• Seq Scan: Reading every row (potentially slow)
• Index Scan / Bitmap Index Scan: Using an index (fast)
• Execution time: Total query time in milliseconds
• Rows Removed by Filter: How many rows were checked but not returned

1.10.6 Managing Indexes

1 -- Create an index
2 CREATE INDEX idx_name ON table_name (column_name);
3

4 -- Create a multi-column index
5 CREATE INDEX idx_name ON table_name (col1, col2);
6

7 -- Remove an index
8 DROP INDEX idx_name;

Indexes are not free:

• They consume disk space
• They slow down INSERT, UPDATE, and DELETE operations
• Too many indexes can hurt overall performance

Balance is key. Index the columns you query most. Indexing everything is like highlighting
every word in a textbook. At that point, nothing is highlighted.

1.11 Building the Music Catalog Schema

1.11.1 Putting It All Together

Now we apply everything we have learned to build the normalized music catalog tables. The
staging table holds the raw import. These tables hold the clean, structured data.

22



23



1.11.2 The Artists Table

1 CREATE TABLE artists (
2 artist_id bigserial,
3 artist_name varchar(200) NOT NULL,
4 CONSTRAINT artist_key PRIMARY KEY (artist_id),
5 CONSTRAINT artist_name_unique UNIQUE (artist_name)
6 );

Key decisions:

• Surrogate key (bigserial) because artist names can change or have variations
• artist_name is NOT NULL and UNIQUE (every artist needs a name, and we do not

want duplicates after cleaning)

1.11.3 The Albums Table

1 CREATE TABLE albums (
2 album_id bigserial,
3 album_title varchar(200) NOT NULL,
4 release_year smallint,
5 genre varchar(50),
6 label varchar(100),
7 duration_min numeric(5,1),
8 artist_id bigint NOT NULL REFERENCES artists (artist_id),
9 CONSTRAINT album_key PRIMARY KEY (album_id),

10 CONSTRAINT check_year_range
11 CHECK (release_year BETWEEN 1900 AND 2100),
12 CONSTRAINT check_duration_positive
13 CHECK (duration_min > 0),
14 CONSTRAINT album_artist_unique
15 UNIQUE (album_title, artist_id)
16 );

Key decisions:

• artist_id is NOT NULL (every album must have an artist)
• CHECK on year range catches obvious errors
• Composite UNIQUE on title + artist prevents duplicate albums per artist
• genre is nullable (some albums defy classification, and our staging data has NULLs)

24



1.11.4 The Tracks Table

1 CREATE TABLE tracks (
2 track_id bigserial,
3 track_title varchar(200) NOT NULL,
4 track_number smallint NOT NULL,
5 duration_sec numeric(6,1),
6 album_id bigint NOT NULL REFERENCES albums (album_id),
7 CONSTRAINT track_key PRIMARY KEY (track_id),
8 CONSTRAINT check_track_number
9 CHECK (track_number > 0),

10 CONSTRAINT check_track_duration
11 CHECK (duration_sec > 0),
12 CONSTRAINT track_album_unique
13 UNIQUE (track_number, album_id)
14 );

Key decisions:

• album_id is NOT NULL (every track belongs to an album)
• Composite UNIQUE on track_number + album prevents duplicate track numbers within

an album
• duration_sec is nullable (metadata is not always complete)

1.11.5 Indexes for Common Queries

1 -- Speed up lookups by artist (for album listings)
2 CREATE INDEX idx_albums_artist ON albums (artist_id);
3

4 -- Speed up lookups by album (for track listings)
5 CREATE INDEX idx_tracks_album ON tracks (album_id);
6

7 -- Speed up genre-based browsing
8 CREATE INDEX idx_albums_genre ON albums (genre);
9

10 -- Speed up searches by release year
11 CREATE INDEX idx_albums_year ON albums (release_year);

Foreign key columns and frequently filtered columns are good index candidates.

25



26



1.11.6 The Complete Schema

27



Three tables, proper constraints, indexes on the right columns. The staging table holds 609
rows of messy data. These tables are ready to hold the clean version.

1.11.7 Constraints Summary

Constraint Purpose Syntax

PRIMARY KEY Unique row identifier CONSTRAINT name
PRIMARY KEY (col)

FOREIGN KEY Referential integrity col type REFERENCES
table (col)

CHECK Value validation CONSTRAINT name CHECK
(expr)

UNIQUE No duplicates CONSTRAINT name
UNIQUE (col)

NOT NULL Requires a value col type NOT NULL

1.11.8 What Is Next

Now that you can build tables with proper constraints, the next step is inspecting and
migrating data from the staging table into the new structure.

Next time we will:

• Audit the staging data for quality issues (spoiler: there are many)
• Fix inconsistencies with UPDATE
• Migrate data into our normalized tables using INSERT INTO … SELECT
• Wrap it all in transactions for safety

1.12 References

1.12.1 Sources

1. DeBarros, A. (2022). Practical SQL: A Beginner’s Guide to Storytelling with Data (2nd
ed.). No Starch Press. Chapter 7: Table Design That Works for You.

28



2. PostgreSQL Documentation. “CREATE TABLE.” https://www.postgresql.org/docs/curr
ent/sql-createtable.html

3. PostgreSQL Documentation. “Indexes.” https://www.postgresql.org/docs/current/inde
xes.html

4. PostgreSQL Documentation. “Constraints.” https://www.postgresql.org/docs/current/
ddl-constraints.html

29

https://www.postgresql.org/docs/current/sql-createtable.html
https://www.postgresql.org/docs/current/sql-createtable.html
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/ddl-constraints.html
https://www.postgresql.org/docs/current/ddl-constraints.html

	From Design to Implementation

