
Lecture 05-2: Inspecting and Modifying Data
DATA 503: Fundamentals of Data Engineering

Lucas P. Cordova, Ph.D.

2026-02-09

This lecture covers the practical skills of inspecting, cleaning, and modifying
data in PostgreSQL. After building normalized tables with constraints, we now
learn to migrate data from a staging table into the final schema. Topics include
auditing data quality, ALTER TABLE for schema changes, UPDATE for fixing
data, DELETE for removing rows, backup strategies, and transactions for safe
modifications. The music catalog dataset from the previous lecture serves as our
running example.

Table of contents

1 Overview � 2

2 Auditing Data Quality Process � 4

3 The Golden Rule of Data Modification � 9

4 Changing Structure � 10

5 Updating and Fixing Data � 10

6 Deleting Data � 15

7 Cleaning Up: DROP � 16

8 Transactions: Your Safety Net � 17

9 Data Migration: Putting It All Together � 19

10 Activity: Music Catalog Migration � 23

11 Key Takeaways � 27

1

1 Overview �

1.1 Where We Are in the Pipeline

We built the tables. We added constraints. Now comes the part where we actually move
the data from the staging table into the normalized schema without breaking anything. No
pressure.

1.2 The Data Migration Challenge

Let’s say you have a staging table (music_catalog) full of raw CSV data and a set of normalized
tables (artists, albums, tracks) waiting to receive it. The problem is that raw data is rarely
clean enough to insert directly.

The workflow:

2

3

1.3 What You Will Learn Today

The DML (Data Manipulation Language) toolkit:

Statement Purpose

UPDATE Change existing values
DELETE Remove rows
ALTER TABLE Modify table structure
INSERT INTO ... SELECT Copy data between tables
START TRANSACTION Begin a safe modification block
COMMIT Save changes permanently
ROLLBACK Undo everything since the last transaction start

These are the verbs of data engineering. SELECT asks questions. These statements change
answers.

2 Auditing Data Quality Process �

2.1 The Inspection Mindset

Before modifying anything, inspect the data. Every experienced data engineer has a horror
story about an UPDATE that ran without a WHERE clause. Do not become a horror story.

Questions to ask before any migration:

• How many rows do I have?
• Are there NULLs where there should not be?
• Are values consistent? (Same entity, different spellings?)
• Are there duplicates?
• Do the data types match the target schema?

2.2 Recall: The Music Catalog Staging Table

Last time, we imported a CSV of album data from a defunct record distributor and built our
normalized target tables (artists, albums, tracks). The staging table looks like this:

1 CREATE TABLE music_catalog (
2 catalog_id varchar(20) CONSTRAINT catalog_key PRIMARY KEY,
3 artist_name varchar(200),
4 album_title varchar(200),

4

5 release_year smallint,
6 genre varchar(50),
7 label varchar(100),
8 duration_min numeric(5,1),
9 decade varchar(10)

10);

Six decades of music. Also six decades of data entry by people who apparently had strong
opinions about capitalization.

2.3 Audit Step 1: How Many Rows?

Always start with the basics:

1 SELECT count(*) FROM music_catalog;

count

609

This tells you the scale of what you are working with. A table with 50 rows and a table with 5
million rows require different strategies. One you can eyeball. The other, you cannot.

2.4 Audit Step 2: Find Duplicate Albums

1 SELECT artist_name,
2 album_title,
3 count(*) AS album_count
4 FROM music_catalog
5 GROUP BY artist_name, album_title
6 HAVING count(*) > 1
7 ORDER BY artist_name, album_title;

artist_name album_title album_count
----------------- ----------------------- -----------
Radiohead OK Computer 2
The Beatles Abbey Road 2

GROUP BY with HAVING count(*) > 1 is your duplicate detector. Same artist, same album,
appearing twice. Could be a reissue. Could be a data entry mistake. Usually the latter.

5

2.5 Audit Step 3: Find NULL Values

1 SELECT genre,
2 count(*) AS genre_count
3 FROM music_catalog
4 GROUP BY genre
5 ORDER BY genre;

genre genre_count
------------- -----------
Alternative 87
Country 34
Electronic 45
Hip-Hop 62
Pop 128
R&B 41
Rock 203

9

Nine rows have no genre. That blank line at the bottom is NULL. NULL is not nothing. NULL
is “I do not know,” which in a database is significantly worse than nothing.

2.6 Audit Step 3b: Investigate the NULLs

1 SELECT catalog_id,
2 artist_name,
3 album_title,
4 genre,
5 release_year
6 FROM music_catalog
7 WHERE genre IS NULL;

IS NULL is the only way to check for NULL. Using = NULL will not work because NULL is not
equal to anything, including itself. This is one of those things that makes perfect logical sense
and no intuitive sense whatsoever.

2.7 Audit Step 4: Inconsistent Names

1 SELECT artist_name,
2 count(*) AS name_count
3 FROM music_catalog

6

4 GROUP BY artist_name
5 ORDER BY artist_name ASC;

artist_name name_count
--------------------------- ----------
Led Zeppelin 3
Led Zepplin 1
Outkast 2
OutKast 1
the rolling stones 1
The Rolling Stones 4
Whitney Houston 3
Whitney houston 1

Eight entries for what should be four artists. Typos, inconsistent casing, and missing “The”
prefixes. In a normalized database, each artist would be one row. In this staging table, each
variation is a separate identity crisis.

2.8 Audit Step 5: Malformed Decade Values

1 SELECT decade,
2 count(*) AS decade_count
3 FROM music_catalog
4 GROUP BY decade
5 ORDER BY decade;

decade decade_count
---------- ------------
1970 42
1970s 58
1980s 89
1990s 104
2000s 97
2010s 78
20s 12
2020s 29

Three problems: “1970” should be “1970s”, “20s” should be “2020s”, and the two 1970s variants
need merging. Whoever entered this data was consistent about 60% of the time, which is the
worst kind of consistent.

7

2.9 Audit Step 5b: Check Release Years Against Decades

1 SELECT decade,
2 min(release_year) AS earliest,
3 max(release_year) AS latest
4 FROM music_catalog
5 GROUP BY decade
6 ORDER BY decade;

decade earliest latest
---------- -------- ------
1970 1970 1979
1970s 1970 1979
1980s 1980 1989
1990s 1990 1999
2000s 2000 2009
2010s 2010 2019
20s 2020 2024
2020s 2020 2025

At least the years match the decades. Small mercies.

2.10 Data Quality Audit Summary

Our audit revealed three categories of problems:

Now we fix them. But first, a word about safety.

8

3 The Golden Rule of Data Modification �

3.1 Backup Before You Modify!

Always create a backup before running UPDATE or DELETE on production
data.

This is not optional. This is not paranoia. This is professionalism. The difference between a
junior and senior data engineer is not skill. It is the number of times they have been burned by
a missing backup.

3.2 Creating a Backup Table

1 CREATE TABLE music_catalog_backup AS
2 SELECT * FROM music_catalog;

CREATE TABLE ... AS SELECT copies both structure and data. Verify the backup:

1 SELECT
2 (SELECT count(*) FROM music_catalog) AS original,
3 (SELECT count(*) FROM music_catalog_backup) AS backup;

original backup
-------- ------

609 609

Same count. You can proceed with slightly less anxiety.

3.3 The Safety Column Pattern

Before modifying a column, copy it first:

1 ALTER TABLE music_catalog ADD COLUMN artist_name_copy varchar(200);
2

3 UPDATE music_catalog
4 SET artist_name_copy = artist_name;

Now artist_name_copy preserves the original values. If your UPDATE goes sideways, you
can restore from the copy without touching the backup table. Belt and suspenders.

9

4 Changing Structure �

4.1 ALTER TABLE: Modifying Table Structure

ALTER TABLE changes the shape of a table without destroying its data:

Operation Syntax

Add column ALTER TABLE t ADD COLUMN col type;
Drop column ALTER TABLE t DROP COLUMN col;
Change type ALTER TABLE t ALTER COLUMN col SET DATA TYPE type;
Set NOT NULL ALTER TABLE t ALTER COLUMN col SET NOT NULL;
Drop NOT NULL ALTER TABLE t ALTER COLUMN col DROP NOT NULL;

4.2 Adding Columns for Data Cleaning

A common pattern: add a new “clean” column alongside the original dirty one.

1 -- Add a standardized artist name column
2 ALTER TABLE music_catalog
3 ADD COLUMN artist_standard varchar(200);
4

5 -- Copy original values as starting point
6 UPDATE music_catalog
7 SET artist_standard = artist_name;

Now you can clean artist_standard without losing the original artist_name values. When
you are satisfied the cleaning is correct, you can drop the original. Or keep both. Data engineers
who keep both sleep better.

5 Updating and Fixing Data �

5.1 The UPDATE Statement

UPDATE changes existing values in a table:

1 -- Update ALL rows (dangerous)
2 UPDATE table_name
3 SET column = value;
4

5 -- Update specific rows (safer)

10

6 UPDATE table_name
7 SET column = value
8 WHERE criteria;
9

10 -- Update multiple columns at once
11 UPDATE table_name
12 SET column_a = value_a,
13 column_b = value_b
14 WHERE criteria;

Exclamation-Triangle Warning

An UPDATE without a WHERE clause modifies every row in the table. PostgreSQL will
not ask “are you sure?” It will simply do it. Immediately. With enthusiasm.

5.2 Fixing Missing Genres

We found nine rows with NULL genres. After researching the albums, we can fill them in:

1 UPDATE music_catalog
2 SET genre = 'Rock'
3 WHERE catalog_id = 'CAT-4501';
4

5 UPDATE music_catalog
6 SET genre = 'Pop'
7 WHERE catalog_id = 'CAT-7823';
8

9 UPDATE music_catalog
10 SET genre = 'Hip-Hop'
11 WHERE catalog_id IN ('CAT-9102', 'CAT-9103', 'CAT-9104');

Each UPDATE returns UPDATE 1 (or UPDATE 3 for the IN clause), confirming the exact number
of rows modified. If it says UPDATE 0, your WHERE clause matched nothing. If it says UPDATE
609, you forgot the WHERE clause. Both are worth investigating.

5.3 Restoring from a Safety Column

If your UPDATE was wrong, restore from the copy:

1 -- Option 1: Restore from the safety column
2 UPDATE music_catalog
3 SET artist_name = artist_name_copy;

11

4

5 -- Option 2: Restore from the backup table
6 UPDATE music_catalog original
7 SET artist_name = backup.artist_name
8 FROM music_catalog_backup backup
9 WHERE original.catalog_id = backup.catalog_id;

Option 2 uses UPDATE ... FROM, which joins two tables during the update. This is PostgreSQL-
specific syntax and extremely useful for data migration work.

5.4 Standardizing Artist Names

Remember the inconsistent spellings? Fix them with pattern matching and exact matches:

1 -- Fix the typo
2 UPDATE music_catalog
3 SET artist_standard = 'Led Zeppelin'
4 WHERE artist_name LIKE 'Led Zep%';
5

6 -- Fix casing inconsistencies
7 UPDATE music_catalog
8 SET artist_standard = 'OutKast'
9 WHERE lower(artist_name) = 'outkast';

10

11 UPDATE music_catalog
12 SET artist_standard = 'The Rolling Stones'
13 WHERE lower(artist_name) = 'the rolling stones';
14

15 UPDATE music_catalog
16 SET artist_standard = 'Whitney Houston'
17 WHERE lower(artist_name) = 'whitney houston';

Verify:

1 SELECT artist_name, artist_standard
2 FROM music_catalog
3 WHERE artist_name != artist_standard
4 ORDER BY artist_standard;

artist_name artist_standard
--------------------- --------------------
Led Zepplin Led Zeppelin
the rolling stones The Rolling Stones

12

OutKast OutKast
Outkast OutKast
Whitney houston Whitney Houston

Five dirty values, four clean artist names. The original artist_name column is untouched for
auditing.

5.5 Fixing Inconsistent Decade Values

The || operator concatenates strings in PostgreSQL. Combined with simple WHERE clauses,
it handles our decade problems:

1 -- Fix "1970" -> "1970s"
2 UPDATE music_catalog
3 SET decade = '1970s'
4 WHERE decade = '1970';
5

6 -- Fix "20s" -> "2020s"
7 UPDATE music_catalog
8 SET decade = '2020s'
9 WHERE decade = '20s';

Verify all decades are now consistent:

1 SELECT decade, count(*) AS decade_count
2 FROM music_catalog
3 GROUP BY decade
4 ORDER BY decade;

decade decade_count
---------- ------------
1970s 100
1980s 89
1990s 104
2000s 97
2010s 78
2020s 41

Six clean decades. No duplicates, no abbreviations.

13

5.6 Removing Duplicate Albums

For the duplicate Beatles and Radiohead entries, we need to keep one and remove the other.
First, identify which to keep:

1 SELECT catalog_id, artist_name, album_title, release_year
2 FROM music_catalog
3 WHERE (artist_name, album_title) IN (
4 SELECT artist_name, album_title
5 FROM music_catalog
6 GROUP BY artist_name, album_title
7 HAVING count(*) > 1
8)
9 ORDER BY artist_name, catalog_id;

Keep the one with the lower catalog_id (the first entry) and delete the duplicate:

1 DELETE FROM music_catalog
2 WHERE catalog_id IN ('CAT-1004', 'CAT-2087');

DELETE 2

Two rows removed. Verify the duplicates are gone:

1 SELECT artist_name, album_title, count(*)
2 FROM music_catalog
3 GROUP BY artist_name, album_title
4 HAVING count(*) > 1;

Empty result. Clean.

5.7 UPDATE with Subqueries

You can use a subquery to determine which rows to update:

1 ALTER TABLE music_catalog ADD COLUMN category varchar(50);
2

3 UPDATE music_catalog
4 SET category = 'Contemporary'
5 WHERE release_year >= 2000;
6

7 UPDATE music_catalog
8 SET category = 'Classic'
9 WHERE release_year < 2000;

14

5.8 UPDATE with FROM

A more readable alternative for cross-table updates:

1 UPDATE music_catalog m
2 SET category = g.category
3 FROM genre_tags g
4 WHERE m.genre = g.genre;

This joins music_catalog to genre_tags during the update and pulls the category value
directly. Same result, cleaner syntax. This is PostgreSQL-specific and one of its nicest
features.

5.9 UPDATE Patterns Summary

Pattern Use When

SET col = value WHERE ... Simple fixes to specific rows
SET col = col2 Copying between columns
SET col = 'prefix' \|\| col String manipulation
UPDATE t1 SET ... FROM t2 WHERE ... Joining tables during update
UPDATE ... WHERE EXISTS (SELECT
...)

Conditional update based on another table

WHERE lower(col) = 'value' Case-insensitive matching

6 Deleting Data �

6.1 The DELETE Statement

DELETE removes rows from a table:

1 -- Delete ALL rows (very dangerous)
2 DELETE FROM table_name;
3

4 -- Delete specific rows (less dangerous)
5 DELETE FROM table_name WHERE expression;

Exclamation-Triangle Warning

DELETE FROM table_name; without a WHERE clause deletes every row. Unlike dropping
the table, the empty table structure remains, staring at you like a reminder of what you

15

have done.

6.2 Deleting Rows by Condition

1 DELETE FROM music_catalog
2 WHERE release_year < 1970;

DELETE 12

This removes all 12 albums released before the 1970s. PostgreSQL confirms the count, which
you should always check against your expectation. If you expected 12 and got 12, good. If you
expected 12 and got 412, less good.

6.3 DELETE vs DROP vs TRUNCATE

Statement What It Does Reversible?

DELETE FROM t WHERE
...

Removes matching rows Yes (in a transaction)

DELETE FROM t Removes all rows, keeps
structure

Yes (in a transaction)

TRUNCATE t Removes all rows, faster than
DELETE

No

DROP TABLE t Removes table entirely No

7 Cleaning Up: DROP �

7.1 Dropping Columns

After migration, remove temporary columns:

1 ALTER TABLE music_catalog DROP COLUMN artist_name_copy;
2 ALTER TABLE music_catalog DROP COLUMN category;

Clean tables are happy tables. Leftover columns named _copy, _backup, _temp, and _old are
the database equivalent of packing boxes you never unpacked after moving.

16

7.2 Dropping Tables

Remove backup tables when you are confident the migration succeeded:

1 DROP TABLE music_catalog_backup;

DROP TABLE is permanent. There is no undo. Make sure you are done with the backup before
dropping it. Then wait a day. Then drop it.

8 Transactions: Your Safety Net �

8.1 What Is a Transaction?

A transaction groups multiple SQL statements into a single atomic unit. Either all of them
succeed, or none of them do.

8.2 Transaction Syntax

1 START TRANSACTION;
2

3 UPDATE music_catalog
4 SET artist_standard = 'Feetwood Mac'
5 WHERE artist_name LIKE 'Fleetwood%';
6

7 -- Check your work
8 SELECT artist_name, artist_standard
9 FROM music_catalog

10 WHERE artist_name LIKE 'Fleetwood%';

17

11

12 -- Oops, typo! Undo everything.
13 ROLLBACK;

8.3 Transaction Example: Catching a Typo

1 START TRANSACTION;
2

3 UPDATE music_catalog
4 SET artist_standard = 'Feetwood Mac' -- Note the missing 'l'
5 WHERE artist_name LIKE 'Fleetwood%';

Check the result:

artist_name artist_standard
---------------- ----------------
Fleetwood Mac Feetwood Mac -- Typo!
Fleetwood Mac Feetwood Mac -- Typo!
Fleetwood Mac Feetwood Mac -- Typo!

The typo is visible. Roll it back:

1 ROLLBACK;

Query again:

artist_name artist_standard
---------------- ----------------
Fleetwood Mac Fleetwood Mac -- Original restored
Fleetwood Mac Fleetwood Mac
Fleetwood Mac Fleetwood Mac

The ROLLBACK undid the UPDATE as if it never happened. Fleetwood Mac’s name is safe.
This is why transactions exist.

18

8.4 When to Use Transactions

Always use transactions when:

• Running multiple related UPDATE or DELETE statements
• Making changes you want to verify before committing
• Working on production data
• Performing data migrations

The workflow:

1. START TRANSACTION;
2. Run your statements
3. SELECT to verify the results
4. COMMIT; if correct, ROLLBACK; if not

LIGHTBULB Tip

In psql, BEGIN is an alias for START TRANSACTION. You will see both in the wild. They
do the same thing.

8.5 Transaction Gotchas

A few things to be aware of:

• DDL statements (CREATE TABLE, DROP TABLE) in PostgreSQL are transactional. This is
unusual. Most other databases auto-commit DDL.

• If your session disconnects during an open transaction, PostgreSQL rolls it back auto-
matically. Your data is safe, if slightly inconvenienced.

• Long-running open transactions can block other users. Do your work, then commit or
rollback. Do not leave a transaction open while you go to lunch.

9 Data Migration: Putting It All Together �

9.1 The Migration Workflow

With all these tools in hand, here is the complete workflow for migrating data from the staging
table to our normalized music catalog:

19

20

9.2 INSERT INTO … SELECT

The key statement for migration copies data from one table to another:

1 -- Populate a normalized table from the staging table
2 INSERT INTO artists (artist_name)
3 SELECT DISTINCT artist_standard
4 FROM music_catalog
5 WHERE artist_standard IS NOT NULL
6 ORDER BY artist_standard;

DISTINCT ensures you do not insert duplicate rows. This is how you populate a lookup table
from a denormalized staging table.

9.3 Migration with Foreign Keys

When migrating to tables with foreign key relationships, order matters:

1 START TRANSACTION;
2

3 -- 1. Populate parent table first (artists)
4 INSERT INTO artists (artist_name)
5 SELECT DISTINCT artist_standard
6 FROM music_catalog
7 WHERE artist_standard IS NOT NULL;
8

9 -- 2. Then populate child table with FK lookups (albums)
10 INSERT INTO albums (album_title, release_year, genre, label,
11 duration_min, artist_id)
12 SELECT DISTINCT m.album_title, m.release_year, m.genre, m.label,
13 m.duration_min, a.artist_id
14 FROM music_catalog m
15 JOIN artists a ON m.artist_standard = a.artist_name;
16

17 -- 3. Verify
18 SELECT count(*) FROM artists;
19 SELECT count(*) FROM albums;
20

21 COMMIT;

Parent tables first, child tables second. Foreign key constraints will reject inserts in the wrong
order.

21

9.4 Verifying the Migration

After committing, verify the data made it across cleanly:

1 -- Check counts
2 SELECT 'artists' AS tbl, count(*) FROM artists
3 UNION ALL
4 SELECT 'albums', count(*) FROM albums;
5

6 -- Spot-check with a JOIN
7 SELECT a.artist_name, al.album_title, al.release_year, al.genre
8 FROM albums al
9 JOIN artists a ON al.artist_id = a.artist_id

10 ORDER BY a.artist_name, al.release_year
11 LIMIT 10;

If the JOIN returns the data you expect, the migration worked. If it returns nothing, your
foreign keys are not aligned. Check the ON clause.

9.5 Backup and Swap Pattern

A safer migration pattern creates the new table, verifies it, then swaps:

1 -- Create backup with extra metadata
2 CREATE TABLE music_catalog_archive AS
3 SELECT *,
4 '2026-02-09'::date AS reviewed_date
5 FROM music_catalog;
6

7 -- Swap tables using RENAME
8 ALTER TABLE music_catalog
9 RENAME TO music_catalog_temp;

10 ALTER TABLE music_catalog_archive
11 RENAME TO music_catalog;
12 ALTER TABLE music_catalog_temp
13 RENAME TO music_catalog_archive;

Three renames and the new table is live. The old one is still available as _archive if anything
goes wrong.

22

10 Activity: Music Catalog Migration �

10.1 The Scenario

You have the music_catalog staging table and the normalized artists and albums tables
from the previous lecture. Your job: audit the staging data, fix the problems, and migrate the
clean data into the normalized schema.

10.2 Part 1 �: Audit the Data (5 min)

Write queries to find all the quality issues. You should check for:

• Duplicate albums (same artist + title appearing more than once)
• NULL values in columns that should not be empty
• Inconsistent artist name spellings and casing
• Malformed decade values

LIGHTBULB Tip

Use GROUP BY ... HAVING count(*) > 1 for duplicates, IS NULL for missing values,
and GROUP BY with ORDER BY to spot inconsistencies.

10.3 Part 2 �: Back Up and Fix (10 min)

1. Create a backup table

2. Add a safety column for artist names

3. Fix each category of issues using UPDATE and DELETE:

• Standardize artist name casing and fix typos
• Fill in NULL genres (research the albums if needed)
• Fix decade format inconsistencies (“1970” to “1970s”, “20s” to “2020s”)
• Remove duplicate album entries

Remember: one category at a time, verify after each fix.

23

10.4 Part 3 �: Migrate to Normalized Tables (10 min)

Write the migration wrapped in a transaction:

1. INSERT INTO artists using SELECT DISTINCT from the cleaned staging data
2. INSERT INTO albums with a JOIN back to artists for the foreign key
3. Verify row counts
4. COMMIT if correct, ROLLBACK if not

LIGHTBULB Tip

Parent tables first, child tables second. Your albums INSERT needs artist_id values,
which means artists must be populated first.

10.5 One Possible Solution

10.5.1 Audit

1 -- Duplicates
2 SELECT artist_name, album_title, count(*)
3 FROM music_catalog
4 GROUP BY artist_name, album_title
5 HAVING count(*) > 1;
6

7 -- NULL genres
8 SELECT catalog_id, artist_name, album_title
9 FROM music_catalog

10 WHERE genre IS NULL;
11

12 -- Inconsistent artist names
13 SELECT artist_name, count(*)
14 FROM music_catalog
15 GROUP BY artist_name
16 ORDER BY artist_name;
17

18 -- Malformed decades
19 SELECT decade, count(*)
20 FROM music_catalog
21 GROUP BY decade
22 ORDER BY decade;

24

10.5.2 Backup and Fix

1 -- Backup
2 CREATE TABLE music_catalog_backup AS
3 SELECT * FROM music_catalog;
4

5 -- Safety column
6 ALTER TABLE music_catalog ADD COLUMN artist_standard varchar(200);
7 UPDATE music_catalog SET artist_standard = artist_name;
8

9 -- Fix artist names
10 UPDATE music_catalog
11 SET artist_standard = 'Led Zeppelin'
12 WHERE artist_name LIKE 'Led Zep%';
13

14 UPDATE music_catalog
15 SET artist_standard = 'OutKast'
16 WHERE lower(artist_name) = 'outkast';
17

18 UPDATE music_catalog
19 SET artist_standard = 'The Rolling Stones'
20 WHERE lower(artist_name) = 'the rolling stones';
21

22 UPDATE music_catalog
23 SET artist_standard = 'Whitney Houston'
24 WHERE lower(artist_name) = 'whitney houston';
25

26 -- Fix decades
27 UPDATE music_catalog SET decade = '1970s' WHERE decade = '1970';
28 UPDATE music_catalog SET decade = '2020s' WHERE decade = '20s';
29

30 -- Fix NULL genres (after research)
31 UPDATE music_catalog SET genre = 'Rock'
32 WHERE catalog_id = 'CAT-4501';
33 -- ... (remaining NULLs)
34

35 -- Remove duplicates
36 DELETE FROM music_catalog
37 WHERE catalog_id IN ('CAT-1004', 'CAT-2087');

25

10.5.3 Migration

1 START TRANSACTION;
2

3 -- 1. Artists
4 INSERT INTO artists (artist_name)
5 SELECT DISTINCT artist_standard
6 FROM music_catalog
7 WHERE artist_standard IS NOT NULL
8 ORDER BY artist_standard;
9

10 -- 2. Albums
11 INSERT INTO albums (album_title, release_year, genre, label,
12 duration_min, artist_id)
13 SELECT DISTINCT m.album_title, m.release_year, m.genre,
14 m.label, m.duration_min, a.artist_id
15 FROM music_catalog m
16 JOIN artists a ON m.artist_standard = a.artist_name;
17

18 -- 3. Verify
19 SELECT 'artists' AS tbl, count(*) FROM artists
20 UNION ALL
21 SELECT 'albums', count(*) FROM albums;
22

23 COMMIT;

10.5.4 Verify

1 -- Full picture
2 SELECT a.artist_name, al.album_title,
3 al.release_year, al.genre
4 FROM albums al
5 JOIN artists a ON al.artist_id = a.artist_id
6 ORDER BY a.artist_name, al.release_year;
7

8 -- Check constraints
9 SELECT * FROM albums WHERE release_year NOT BETWEEN 1900 AND 2100;

10 SELECT * FROM albums WHERE duration_min <= 0;

26

10.6 Part 4 �: Discussion Questions

1. What would happen if you tried to insert albums before artists? What error would you
see?

2. Why do we use artist_standard for the JOIN instead of artist_name?
3. If an artist later changes their name, how many rows need updating in the normalized

schema vs the original flat staging table?
4. What would you add to make this migration idempotent (safe to run multiple times)?

11 Key Takeaways �

11.1 The DML Toolkit

Tool When to Use

UPDATE ... SET ...
WHERE

Fix specific data quality issues

UPDATE ... FROM Update using data from another table
DELETE FROM ... WHERE Remove rows that do not belong
ALTER TABLE ADD/DROP
COLUMN

Reshape tables for cleaning

INSERT INTO ... SELECT Migrate data between tables
START TRANSACTION /
COMMIT / ROLLBACK

Wrap everything in a safety net

11.2 The Data Engineer’s Checklist

Before any data modification:

1. Audit the data thoroughly
2. Create a backup (table or safety columns)
3. Use transactions for multi-step changes
4. Verify after every modification
5. Keep the originals until you are certain

The goal is not speed. The goal is correctness. A fast migration that loses data is not a
migration. It is a disaster with good performance metrics.

27

11.3 What Is Next

You now have the complete toolkit:

From raw CSV to a clean, normalized, constraint-enforced production database. The entire
pipeline. Next, you will apply this pipeline end-to-end on your own with a new dataset.

11.4 References

11.5 Sources

1. DeBarros, A. (2022). Practical SQL: A Beginner’s Guide to Storytelling with Data (2nd
ed.). No Starch Press. Chapter 9: Inspecting and Modifying Data.

2. PostgreSQL Documentation. “UPDATE.” https://www.postgresql.org/docs/current/sql-
update.html

3. PostgreSQL Documentation. “DELETE.” https://www.postgresql.org/docs/current/sql-
delete.html

4. PostgreSQL Documentation. “Transactions.” https://www.postgresql.org/docs/current/
tutorial-transactions.html

5. PostgreSQL Documentation. “ALTER TABLE.” https://www.postgresql.org/docs/curr
ent/sql-altertable.html

28

https://www.postgresql.org/docs/current/sql-update.html
https://www.postgresql.org/docs/current/sql-update.html
https://www.postgresql.org/docs/current/sql-delete.html
https://www.postgresql.org/docs/current/sql-delete.html
https://www.postgresql.org/docs/current/tutorial-transactions.html
https://www.postgresql.org/docs/current/tutorial-transactions.html
https://www.postgresql.org/docs/current/sql-altertable.html
https://www.postgresql.org/docs/current/sql-altertable.html

	Overview 🚁
	Auditing Data Quality Process 🧪
	The Golden Rule of Data Modification 📜
	Changing Structure 📦
	Updating and Fixing Data 🧰
	Deleting Data ⌫
	Cleaning Up: DROP 🧹
	Transactions: Your Safety Net 🦺
	Data Migration: Putting It All Together ⋈
	Activity: Music Catalog Migration 🎧
	Key Takeaways 🎁

